6 Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C consisting of the skip no-op command, sequential composition $C_1; C_2$, loops while B do C for Boolean expressions B, conditionals if B then C_1 else C_2, assignment $X := E$ for program variables X and arithmetic expressions E, heap allocation $X := \text{alloc}(E_1, \ldots, E_n)$, heap assignment $\lfloor E_1 \rfloor := E_2$, heap dereference $X := \lfloor E \rfloor$, and heap location disposal $\text{dispose}(E)$. Assume $\text{null} = 0$, and predicates for lists and partial lists:

$$\text{list}(t, \lfloor \rfloor) = (t = \text{null}) \land \text{emp}$$
$$\text{list}(t, h : : \alpha) = \exists y. (t \mapsto h) * ((t + 1) \mapsto y) * \text{list}(y, \alpha)$$
$$\text{plist}(t_1, \lfloor \rfloor, t_2) = (t_1 = t_2) \land \text{emp}$$
$$\text{plist}(t_1, h :: \alpha, t_2) = \exists y. (t_1 \mapsto h) * ((t_1 + 1) \mapsto y) * \text{plist}(y, \alpha, t_2)$$

In the following, all triples are linear separation logic triples.

(a) Explain why a command C of your choice satisfies the following triple, or explain why no such C exists: $\{\text{null} \mapsto 5\} C \{\top\}$. [2 marks]

(b) Explain why a command C of your choice satisfies the following triple (i.e. moves v to a different location): $\{x \mapsto v \land X = x\} C \{Y \mapsto v \land Y \neq x\}$. [2 marks]

(c) Give a loop invariant that would serve to prove the following triple, for a command that creates a reversed copy of a list (no proof outline required).
 $\{\text{list}(X, \alpha)\}$
 $Y := \text{null}; \ C := X;\$
 while $C \neq \text{null}$ do $(V := \lfloor C \rfloor; Y := \text{alloc}(V, Y); C := \lfloor C+1 \rfloor)$
 $\{\text{list}(X, \alpha) \ast \text{list}(Y, \text{rev } \alpha)\}$
 [4 marks]

(d) Adjust the program in (c) with a new loop body C_L, so it (still) terminates and $\{\text{list}(X, \alpha)\} Y := \text{null}; \ C := X;\$ while $C \neq \text{null}$ do $C_L \{\text{list}(Y, \text{rev } \alpha)\}$ holds (no proof, loop invariant, or termination argument required). [2 marks]

(e) Consider an unsound extension of the separation-logic proof system with the rule $\{E_1 \land \text{emp}\} \text{alloc here}(E_1, E_2) \{E_1 \mapsto E_2\}$ for a new command $\text{alloc here}(E_1, E_2)$. Explain in detail, with reference to the proof rules, how $\{\text{emp}\} C \{\bot\}$ is derivable, for a non-looping C of your choice. [4 marks]

(f) Give a loop invariant that would serve to prove the following triple, for a command that creates a list of the Fibonacci numbers up to n (no proof outline required). Assume $\text{fibs}(i,j) = [\text{fib } i, \ldots, \text{fib } j]$ for $i \leq j$ and $\lfloor \rfloor$ otherwise.
 $\{\text{emp} \land (N = n \land n > 2)\}$
 $II := \text{alloc}(1, \text{null}); \ I := \text{alloc}(0, II); \ X := I; \ C := 2;\$
 while $C \leq N$ do $\begin{pmatrix} \text{IV} := \lfloor I \rfloor; \ II := \lfloor II \rfloor; \ I := II; \ \text{IV} := \text{alloc}(\text{IV+IV}, \text{null}); \ [I+1] := II; \ C := C+1 \end{pmatrix}$
 $\{\text{list}(X, \text{fibs}(0, n))\}$
 [6 marks]