3 Cryptography (mgk25)

Your colleagues need a pseudo-random permutation \(P_K : \mathbb{Z}_{10^6} \leftrightarrow \mathbb{Z}_{10^6} \), over the integers in the range 0 to 999,999, where \(K \) is a 128-bit key. The standard library of their development environment offers them only a 128-bit pseudo-random permutation, in form of the blockcipher AES-128.

(a) Recalling that \(2^{20} = 1.048576 \times 10^6 \), they first decide that implementing a 20-bit pseudo-random permutation \(T_K : \{0,1\}^{20} \leftrightarrow \{0,1\}^{20} \) might get them closer to a solution. How could they implement \(T_K \) using the available AES function? \([4 \text{ marks}] \)

(b) One of your colleagues then proposes to use the function

\[
P'_K(m) := \langle T_K(\langle m \rangle_{20}) \rangle^{-1} \mod 10^6
\]

as a “good enough” approximation of what is required.

Notation: \(\langle \cdot \rangle_n : \mathbb{Z}_{2^n} \rightarrow \{0,1\}^n \) encodes non-negative integers as \(n \)-bit bitstrings and \(\langle \cdot \rangle^{-1} : \{0, 1\}^* \rightarrow \mathbb{N} \) does the opposite, i.e. \(\langle \langle i \rangle_n \rangle^{-1} = i \) for all \(0 \leq i < 2^n \).

Propose a distinguisher \(D \) that can distinguish \(P'_K \) from a random permutation \(R : \mathbb{Z}_{10^6} \leftrightarrow \mathbb{Z}_{10^6} \) using not more than 5000 oracle queries, and show that it achieves \(\left| \mathbb{P}(D^{P'_K}(1)) - \mathbb{P}(D^{R}(1)) \right| > \frac{1}{2} \) averaged over all \(K \). \([6 \text{ marks}] \)

(c) Another colleague then proposes the following algorithm:

```
function P_K(m):
    c := T_K(\langle m \rangle_{20})
    m := \langle c \rangle^{-1}
    while m \geq 10^6:
        c := T_K(c)
        m := \langle c \rangle^{-1}
    return m
```

Show that this is in fact a permutation by

(i) explaining why this algorithm always terminates; \([1 \text{ mark}] \)

(ii) providing an implementation of the inverse \(P_K^{-1}(m) \). \([3 \text{ marks}] \)

(d) What side-channel risk could the algorithm for \(P_K(m) \) from part (c) pose, and what can an observer learn from it? \([2 \text{ marks}] \)

(e) Propose an alternative algorithm that reduces the risk that an observer can learn anything from this type of side channel to a negligible probability. \([4 \text{ marks}] \)