COMPUTER SCIENCE TRIPOS Part II - 2023 - Paper 8

3 Cryptography (mgk25)

Your colleagues need a pseudo-random permutation $P_{K}: \mathbb{Z}_{10^{6}} \leftrightarrow \mathbb{Z}_{10^{6}}$, over the integers in the range 0 to 999999 , where K is a 128 -bit key. The standard library of their development environment offers them only a 128 -bit pseudo-random permutation, in form of the blockcipher AES-128.
(a) Recalling that $2^{20}=1.048576 \times 10^{6}$, they first decide that implementing a 20 -bit pseudo-random permutation $T_{K}:\{0,1\}^{20} \leftrightarrow\{0,1\}^{20}$ might get them closer to a solution. How could they implement T_{K} using the available AES_{K} function?
[4 marks]
(b) One of your colleagues then proposes to use the function

$$
P_{K}^{\prime}(m):=\left\langle T_{K}\left(\langle m\rangle_{20}\right)\right\rangle^{-1} \bmod 10^{6}
$$

as a "good enough" approximation of what is required.
Notation: $\langle\cdot\rangle_{n}: \mathbb{Z}_{2^{n}} \rightarrow\{0,1\}^{n}$ encodes non-negative integers as n-bit bitstrings and $\langle\cdot\rangle^{-1}:\{0,1\}^{*} \rightarrow \mathbb{N}$ does the opposite, i.e. $\left\langle\langle i\rangle_{n}\right\rangle^{-1}=i$ for all $0 \leq i<2^{n}$.

Propose a distinguisher D that can distinguish P_{K}^{\prime} from a random permutation $R: \mathbb{Z}_{10^{6}} \leftrightarrow \mathbb{Z}_{10^{6}}$ using not more than 5000 oracle queries, and show that it achieves $\left|\mathbb{P}\left(D^{P_{K}^{\prime}(\cdot)}=1\right)-\mathbb{P}\left(D^{R(\cdot)}=1\right)\right|>\frac{1}{2}$ averaged over all K. [6 marks]
(c) Another colleague then proposes the following algorithm:

```
function }\mp@subsup{P}{K}{}(m)\mathrm{ :
    c:= TK
    m:=\langlec\rangle}\mp@subsup{}{}{-1
    while m\geq10}\mp@subsup{0}{}{6
        c:= TK
        m:=\langlec\rangle}\mp@subsup{}{}{-1
    return m
```

Show that this is in fact a permutation by
(i) explaining why this algorithm always terminates;
(ii) providing an implementation of the inverse $P_{K}^{-1}(m)$.
(d) What side-channel risk could the algorithm for $P_{K}(m)$ from part (c) pose, and what can an observer learn from it?
(e) Propose an alternative algorithm that reduces the risk that an observer can learn anything from this type of side channel to a negligible probability. [4 marks]

