11 Quantum Computing (sjh227)

(a) What problem does Grover’s search algorithm tackle, and what is its advantage over the best classical algorithm for this task? [2 marks]

(b) Let there be a database containing 32 elements, indexed by the binary numbers 00000 to 11111. A single element 00110 is marked.

(i) Give an oracle circuit that identifies the marked element. [1 mark]

(ii) If Grover’s search algorithm is applied to find the marked element, what should the initial state be set to, and what is the state after a single Grover iterate has been applied? [4 marks]

(iii) To find the marked element with maximum probability requires \(N \) iterates in total. What is the value of \(N \), and what is the probability of correctly finding the marked element? [4 marks]

(iv) If the algorithm is instead run with \(3N \) iterates in total, what is the probability of correctly finding the marked element? Comment on your answer. [2 marks]

(c) Let \(V \) be an oracle circuit that marks one or more elements, acting as follows:

\[
V(|x\rangle|a\rangle) = |x\rangle|a \oplus f(x)\rangle
\]

Here \(a \) takes the values 0 or 1, and we have \(f(x) = 1 \) when \(x \) is the index of a marked element, and \(f(x) = 0 \) otherwise. How could \(V \) be altered to allow Grover’s search to find an unmarked element? [2 marks]

(d) A Grover iterate consists of the oracle circuit, typically denoted \(V \), followed by a circuit \(W \):

(i) What is the function of \(W \)? [1 mark]

(ii) What would happen if the order of \(V \) and \(W \) were swapped, such that Grover’s algorithm is run with \(V \) following \(W \) as the Grover iterate? [4 marks]