COMPUTER SCIENCE TRIPOS Part IB - 2023 - Paper 7

8 Further Graphics (aco41)

(a) We are given a scene with a point light source at a point \mathbf{p} that emits light of radiance L in all directions, and a plane with equation $\mathbf{n}^{T}(\mathbf{x}-\mathbf{c})=0$ and BRDF f_{r}. We send a ray from the camera sensor with origin \mathbf{o} and direction \mathbf{d} such that each point on the ray is $\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}$ for $t>0$.
(i) What is the intersection point of the ray and the plane?
(ii) What is the incoming light direction?
(iii) What is the direction of the outgoing reflected light towards the sensor origin \mathbf{o} ?
(iv) What is the radiance of the light reflected towards the sensor origin \mathbf{o} ?
[2 marks]
(b) A surface represented by an implicit function $f(\mathbf{x})$ is transformed by linear blend skinning such that each point \mathbf{x} is mapped to \mathbf{x}^{\prime}. There are two bones with transformation matrices \mathbf{T}_{1} and \mathbf{T}_{2} and corresponding blending weights $w_{1}(\mathbf{x})$ and $w_{2}(\mathbf{x})=1-w_{1}(\mathbf{x})$. In addition, we are given $s_{1}\left(\mathbf{x}^{\prime}\right)=w_{1}(\mathbf{x})$ and $s_{2}\left(\mathbf{x}^{\prime}\right)=w_{2}(\mathbf{x})$.
(i) Write the expression for \mathbf{x}^{\prime}.
[1 mark]
(ii) Simplify the expression for \mathbf{x}^{\prime} assuming no rotations are stored on the bones. Modify the expression further for the case where the weights are not summing up to 1 .
[2 marks]
(iii) What is the implicit function of the transformed surface assuming all blended rotations are invertible? Simplify as much as possible. [3 marks]
(iv) What is the implicit function of the transformed surface if there are no rotations stored on the bones? Simplify as much as possible.
[2 marks]
(c) In this question, we will think about how quaternions represent spatial rotations.
(i) Write the form of a general quaternion and the form of a quaternion representing rotations.
(ii) Prove that a quaternion \mathbf{q} and $-\mathbf{q}$ represents the same rotation.
(iii) Given a quaternion \mathbf{q} with no real part, what is $\mathbf{q q}$?

