COMPUTER SCIENCE TRIPOS Part IB - 2023 - Paper 6

2 Complexity Theory (ad260)

Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a function on Σ-strings for some finite alphabet Σ. Say that f is a pseudo one-way function if it satisfies the following three conditions:

- There is a constant k such that for every $x \in \Sigma^{+},|x|^{1 / k} \leq|f(x)| \leq|x|^{k}$. (Here $|x|$ denotes the length of a string $x)$.
- f is computable by a polynomial-time algorithm.
- There is no function g, computable in polynomial time, such that $f(g(y))=y$ for all strings y in the range (i.e. image) of f.

For a pseudo one-way function f, let $L_{f} \subseteq \Sigma^{*} \times \Sigma^{*}$ be the following set

$$
L_{f}=\left\{(x, y) \mid \exists z\left(z \leq_{\operatorname{lex}} x \text { and } f(z)=y\right)\right\} .
$$

Here $\leq_{\text {lex }}$ denotes the lexicographic order on strings.
(a) How would you modify the definition of a pseudo one-way function to obtain the definition of a one-way function in the sense defined by Papadimitriou?
(b) Show that for any pseudo one-way function f, the language L_{f} is in NP.
(c) Show that for any pseudo one-way function f, the language L_{f} is not in P .

In the following, ϕ denotes an arbitrary Boolean formula and T a list assigning a Boolean value to each variable appearing in ϕ. Fix Σ to be a suitable alphabet in which we can write ϕ and T as well as the string "no" and consider the following function defined on all Σ-strings.

$$
s(x)= \begin{cases}\phi & \text { if } x=(\phi, T) \text { and } T \text { satisfies } \phi \\ \text { "no" } x & \text { otherwise }\end{cases}
$$

(d) Prove that if $\mathrm{P} \neq \mathrm{NP}$, then s is a pseudo one-way function.

