7 Discrete Mathematics (mpf23)

(a) Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers a and b,

(i) if $\gcd(a, b) = 1$ then, for all integers n, $(a \mid n \land b \mid n) \Rightarrow (a \cdot b) \mid n$;

(ii) if $(a \mid n \land b \mid n) \Rightarrow (a \cdot b) \mid n$, for all integers n, then $\gcd(a, b) = 1$.

(b) Let U be a set. Prove that, for all sets A, B, C in $\mathcal{P}(U)$,

$$(A \cap B) \cup (A^c \cap C) \cup (B \cap C) = (A \cap B) \cup (A^c \cap C)$$

(c) Say whether the following statement is true or false, and prove your claim.

For all sets A and subsets $S \subseteq A$, there exists a function $f : A \rightarrow S$ such that, for all $s \in S$, $f(s) = s$.
