COMPUTER SCIENCE TRIPOS Part IA – 2023 – Paper 2

2 Digital Electronics (ijw24)

- (a) D type flip-flops are to be used to implement a synchronous counter having an output sequence 0, 1, 2, 3, 4, 5, 0, ... (decimal).
 - (i) Determine the next state combinational logic required for the D type flip-flops.
 - (ii) Show whether or not the counter self-starts.

[8 marks]

(b) A finite state machine is represented by the following state table:

Current state (Q)	Next state (Q')					Output (Z)
	XY =	00	01	10	11	
\overline{A}		A	F	C	B	0
B		A	B	D	H	1
C		G	B	C	D	0
D		C	F	D	D	1
E		G	A	E	D	1
F		F	F	G	B	0
G		G	B	G	E	0
H		F	B	E	H	1

- (i) Determine the equivalent states using the state equivalence/implication table approach.
- (ii) Show the reduced state table.

[9 marks]

(c) Consider two D type flip-flops operating in a synchronous configuration. The input of the second flip-flop, D_2 , is connected to the output of a combinational logic block, and one of the inputs to the combinational logic block is connected to the output, Q_1 , of the first flip-flop.

For both flip-flops, the minimum set-up time $t_{su,min} = 20$ ns, the minimum hold time $t_{h,min} = 5$ ns, and the maximum propagation delay $t_{pc,max} = 40$ ns. The maximum propagation delay of the combinational logic block from Q_1 to D_2 is $t_{pd,max} = 49$ ns.

- (i) Determine the maximum clock frequency for this circuit.
- (ii) How could this be increased without changing the flip-flops? [3 marks]