COMPUTER SCIENCE TRIPOS Part IA - 2023 - Paper 1

6 Introduction to Probability (mj201+tms41)

(a) Let $X \sim \operatorname{Uni}(0,1 / 2)$ be a uniform continuous random variable. What are $\mathbf{E}[X]$ and $\mathbf{V}[X]$?
[3 marks]
(b) Let $X \sim \operatorname{Uni}(0,1 / 2)$ and $Y \sim \operatorname{Uni}(0,1 / 2)$ be two independent uniform continuous random variables, and define $Z=\min (X, Y)$.
(i) What is the cumulative distribution function of Z ?
(ii) What is $\mathbf{E}[Z]$?
(c) Let $X \sim \operatorname{Uni}(0,1)$ and $Y \sim \operatorname{Uni}(0,1)$ be two independent uniform continuous random variables.

(i) Consider a random triangle between the three points $(0,0),(1,0)$ and (X, Y), as illustrated in the figure above. What is the expectation of the area?
[2 marks]
(ii) Now consider a random circle with center (X, Y) such that the circumference is as large as possible but remains within the unit-square $[0,1]^{2}$ (see figure). What is the expectation of the circumference?
[4 marks]
(iii) Based on your answer from (c)(ii), what can you conclude about the expectation of the area of this circle?
[2 marks]
(iv) Additionally, let $X^{\prime} \sim \operatorname{Uni}(0,1)$ and $Y^{\prime} \sim \operatorname{Uni}(0,1)$ be two uniform continuous random variables and assume $X, Y, X^{\prime}, Y^{\prime}$ are mutually independent. Consider a random rectangle with corner points (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$, which are diagonally opposite. What is the expectation of the circumference?
[4 marks]

