6 Hoare Logic and Model Checking (cp526)

Consider the temporal logic CTL over atomic propositions $p \in AP$:

$$\psi \in \text{StateProp} ::= \bot \mid \top \mid \neg \psi \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \psi_1 \rightarrow \psi_2 \mid p \mid A \phi \mid E \phi,$$

$$\phi \in \text{PathProp} ::= X \psi \mid F \psi \mid G \psi \mid \psi_1 U \psi_2,$$

(a) Consider a temporal model over atomic propositions $AP = \{p, q, r, s\}$, with states $\{1, 2, 3, 4, 5\}$, initial state 1 and transitions and state labelling as shown in the diagram (e.g. in state 1, atomic propositions p and q hold). Informally describe the meaning of each of the following CTL formulae over AP and explain why they hold in the model or give a counter-example if they do not.

1: $\{p, q\}$
2: $\{s\}$
3: $\{p\}$
4: $\{q\}$
5: $\{q, r\}$

(i) $\text{AG} (p \lor q)$ [2 marks]
(ii) $\text{A} ((p \lor \ q) \ U \ r)$ [3 marks]

(b) Specify the following properties as CTL formulae over AP as defined in (a).

(i) Once r holds, r always holds. [3 marks]

(ii) From every reachable state, it is always possible to reach another state from where on r always holds. [3 marks]

(c) John’s car is getting old and parts can develop problems at any point. The car internally monitors its parts and reports, for each part, either no problem or a warning. When there is a warning for the engine (considered to be a single part) or for any three parts at once (John is lazy), John takes the car to the garage where all problems are fixed.

(i) Describe a temporal model M_1 of the car’s status that keeps track of exactly which parts of the car have warnings. Assume initially there are no warnings/problems, and assume that each new state has at most one additional problem compared to the previous state. Use Parts as the set of parts of the car. Moreover, use $AP = \{\text{needsRepair}\}$ as the set of atomic propositions, where needsRepair should hold in any state where any part has a warning. [4 marks]

(ii) Create a more abstract model M' over AP that only tracks the information John cares about, and give a simulation of M by M' (no proof needed).
[5 marks]