COMPUTER SCIENCE TRIPOS Part II – 2022 – Paper 9

5 Denotational Semantics (mpf23)

You may use standard results provided that you state them clearly.

(a) For a domain D, let fix be the function mapping a continuous function $f \in (D \to D)$ to its least pre-fixed point $fix(f) \in D$.

Prove that $fix: (D \to D) \to D$ is continuous. [4 marks]

(b) For a PCF type τ , let $\Omega_{\tau} = \mathbf{fix}(\mathbf{fn} \ x : \tau, x)$ and consider the following closed PCF terms of type $(\tau \to \tau) \to (nat \to \tau)$.

$$\begin{split} \mathbf{M}_{\tau} &= \mathbf{fn} \ f : \tau \to \tau. \ \mathbf{fn} \ n : nat. \ \mathbf{fix}(f) \\ \mathbf{N}_{\tau} &= \mathbf{fn} \ f : \tau \to \tau. \\ \mathbf{fix} \Big(\ \mathbf{fn} \ h : nat \to \tau. \ \mathbf{fn} \ n : nat. \\ f \Big(\mathbf{if} \ \mathbf{zero}(n) \ \mathbf{then} \ \Omega_{\tau} \ \mathbf{else} \ h(\mathbf{pred}(n)) \Big) \ \Big) \end{split}$$

Give an explicit description of the denotations $\llbracket M_{\tau} \rrbracket$ and $\llbracket N_{\tau} \rrbracket$ in the domain $(\llbracket \tau \rrbracket \to \llbracket \tau \rrbracket) \to (\mathbb{N}_{\perp} \to \llbracket \tau \rrbracket).$ [4 marks]

(c) Recall that the contextual preorder $\vdash M \leq_{\text{ctx}} N : \tau$ holds whenever M and N are closed PCF terms of type τ and for all PCF contexts \mathcal{C} for which $\mathcal{C}[M]$ and $\mathcal{C}[N]$ are closed PCF terms of type $\gamma \in \{nat, bool\}$ and for all values V of type γ , if $\mathcal{C}[M] \Downarrow_{\gamma} V$ then $\mathcal{C}[N] \Downarrow_{\gamma} V$.

Say whether the following statements concerning the PCF terms in Part (b) are true or false and, respectively, either prove or disprove them:

(i) For all PCF types τ , $\vdash M_{\tau} \leq_{ctx} N_{\tau} : (\tau \to \tau) \to (nat \to \tau).$

(Hint: Consider the case $\tau = nat \rightarrow nat$.) [6 marks]

(*ii*) For all PCF types τ , $\vdash N_{\tau} \leq_{ctx} M_{\tau} : (\tau \to \tau) \to (nat \to \tau)$.

(Hint: Recall that every PCF type is of the form $\tau_1 \to (\cdots (\tau_{\ell} \to \gamma) \cdots)$ where $\ell \in \mathbb{N}, \tau_i \ (1 \le i \le \ell)$ are types, and $\gamma \in \{nat, bool\}$.) [6 marks]