9 Optimising Compilers (tmj32)

A language \mathcal{L} has the following abstract syntax, where c ranges over integer constants, x ranges over a set of variables and \oplus ranges over binary operations:

$$e = c \mid x \mid \lambda x.e \mid e_1 e_2 \mid \text{let } x = e_1 \text{ in } e_2 \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \mid e_1 \oplus e_2$$

Consider the following program P in \mathcal{L}:

$$\text{let } x = 5 \text{ in}$$
$$\text{let } f = \lambda x.2 \cdot x \text{ in}$$
$$\text{if } x > 0 \text{ then } f \ x \text{ else } f \ (0 - x)$$

This question asks you to perform 0CFA on P.

(a) Draw the program P as a tree and label its program points. [4 marks]

(b) Give the space of flow values for P. [2 marks]

(c) Each program point i in P has an associated flow variable α_i. Show the initial constraints on each α_i that are generated when performing 0CFA. [4 marks]

(d) Show how the process of solving the constraints from part (c) leads to additional constraints being generated. [4 marks]

(e) Show the final solution after solving all constraints from parts (c) and (d) and simplifying binary terms. [4 marks]

(f) Explain whether your answer is a safe over- or under-approximation of the result of P and where the imprecision comes from. [2 marks]