6 Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C consisting of the skip no-op command, sequential composition $C_1;C_2$, loops while B do C for boolean expressions B, conditionals if B then C_1 else C_2, assignment $X := E$ for program variables X and arithmetic expressions E, heap allocation $X := \text{alloc}(E_1,\ldots,E_n)$, heap assignment $[E_1] := E_2$, heap dereference $X := [E]$, and heap location disposal $\text{dispose}(E)$. Assume $\text{null} = 0$, and predicates for lists and partial lists:

\[
\text{list}(t,[]) = (t = \text{null}) \land \text{emp}
\]

\[
\text{list}(t,h::\alpha) = \exists y.((t \mapsto h) \ast ((t + 1) \mapsto y) \ast \text{list}(y,\alpha))
\]

\[
\text{plist}(t_1,\alpha,t_2) = (t_1 = t_2) \land \text{emp}
\]

\[
\text{plist}(t_1,h::\alpha,t_2) = \exists y.((t_1 \mapsto h) \ast ((t_1 + 1) \mapsto y) \ast \text{plist}(y,\alpha,t_2))
\]

In the following, all triples are linear separation logic triples.

(a) Find a command C satisfying the following separation logic partial correctness triple: \(\{ \top \} \ C \ {X \mapsto 0} \ast \{ \top \} \ast \{X \mapsto 0\} \). \[2 \text{ marks}\]

(b) Give a loop invariant that would serve to prove the following triple, where ‘map negate α’ is the list of negated values in α (no proof outline required):

\[
\text{list}(X,\alpha)
\]

$Y = X$; while $Y \neq \text{null}$ do (\(V := [Y]; [Y] = V \ast (-1); Y = [Y + 1]\))

\[
\text{list}(X,\text{map negate } \alpha)
\]

\[4 \text{ marks}\]

(c) Give a loop invariant that would serve to prove the following triple, for a program that finds the last element of a list (no proof outline required):

\[
\text{list}(X,\alpha)
\]

$\text{CUR} = X$; $\text{NEXT} = [X + 1]$;

while $\text{NEXT} \neq \text{null}$ do ($\text{CUR} = \text{NEXT}; \text{NEXT} = [\text{NEXT} + 1]$);

$\text{LAST} = [\text{CUR}]$

\[
\text{list}(X,\alpha \ast [l]) \land \text{LAST} = l
\]

\[5 \text{ marks}\]

(d) Explain why a proof of Part (c) would not succeed if the post-condition of the triple was replaced with $\{\text{emp} \land \text{LAST} = l\}$. \[3 \text{ marks}\]

(e) Give a loop invariant that would serve to prove the following triple, for a program that copies a given list (no proof outline required):

\[
\text{list}(X,\alpha) \land \alpha \neq []
\]

$V = [X]; Y := \text{alloc}(V, \text{null}); \text{CUR} := [X+1]; \text{OLD} = Y$

while $\text{CUR} \neq \text{null}$ do ($\text{CUR} = \text{CUR}; \text{N} = \text{alloc}(V, \text{null}); [\text{OLD} + 1] = \text{N};$

\[
\text{CUR} = [\text{CUR} + 1]; \text{OLD} = \text{N}
\]

\[
\text{list}(X,\alpha) \ast \text{list}(Y,\alpha)
\]

\[6 \text{ marks}\]