COMPUTER SCIENCE TRIPOS Part II – 2022 – Paper 8

4 Denotational Semantics (mpf23)

(a) For posets D and E, and for monotone functions $f: D \to E$ and $g: E \to D$, we write $f: D \cong E: g$ whenever $g \circ f = \mathrm{id}_D$ and $f \circ g = \mathrm{id}_E$. Moreover, we say that D and E are *isomorphic*, and write $D \cong E$, whenever $f: D \cong E: g$ for some f and g.

Prove that for domains D and E, and for monotone functions $f: D \to E$ and $g: E \to D$, if $f: D \cong E: g$ then f and g are continuous. [4 marks]

(b) A refsym is defined to be a pair $\underline{A} = (A, \sim_A)$ consisting of a set A together with a binary relation on it $\sim_A \subseteq A \times A$ that is reflexive (namely, $x \sim_A x$ for all $x \in A$) and symmetric (namely, $x \sim_A y$ implies $y \sim_A x$ for all $x, y \in A$).

For a refsym $\underline{A} = (A, \sim_A)$, define $\Delta(\underline{A}) = \{ \alpha \subseteq A \mid \forall x, y \in \alpha. \ x \sim_A y \}.$

- (i) Prove that for a refsym \underline{A} , the pair $D(\underline{A}) = (\Delta(\underline{A}), \subseteq)$ is a domain. [5 marks]
- (*ii*) For a set A, define a refsym F(A) such that the domain D(F(A)) and the flat domain A_{\perp} are isomorphic. Establish the isomorphism $D(F(A)) \cong A_{\perp}$. [5 marks]
- (*iii*) For refsyms \underline{A}_1 and \underline{A}_2 define a refsym $P(\underline{A}_1, \underline{A}_2)$ such that the domain $D(P(\underline{A}_1, \underline{A}_2))$ and the product domain $D(\underline{A}_1) \times D(\underline{A}_2)$ are isomorphic. Establish the isomorphism $D(P(\underline{A}_1, \underline{A}_2)) \cong D(\underline{A}_1) \times D(\underline{A}_2)$. [6 marks]