3 Cryptography (mk428)

(a) Let \(\Pi = (\text{Gen}, \text{Enc}, \text{Dec}) \) be a public-key encryption scheme that offers CCA security. Explain the concept of forward secrecy, why it might be useful, and why \(\Pi \) does not offer it. [3 marks]

(b) Explain how the Diffie–Hellman key exchange works, and the assumptions under which it is secure. [3 marks]

(c) You and your colleague are asked to design a payments system based on an authenticated symmetric encryption scheme \((\text{Enc}, \text{Dec})\), a digital signature scheme \((\text{Gen}, \text{Sign}, \text{Vrfy})\), a Diffie–Hellman group with generator \(g \), and a key derivation function \(\text{KDF} \). The requirements are as follows:

- Let \(B \) be a bank, and let Alice (\(A \)) be a customer of \(B \). Say \(A \) has a digital token \(T \) (which we take to be an arbitrary bit string) that is worth money. \(A \) can deposit that money in her account by securely sending \(T \) to \(B \).
- You may assume that the bank knows the public keys of all of its customers, and that each customer knows the public key of the bank.
- As the token \(T \) is sent over the network, it must be kept confidential from active attackers. Moreover, the protocol must provide forward secrecy.

Let \((\text{PK}_A, \text{SK}_A) \leftarrow \text{Gen}\) be Alice’s signature keypair, and \((\text{PK}_B, \text{SK}_B) \leftarrow \text{Gen}\) be the bank’s keypair. Your colleague proposes using the following scheme:

\[
B \to A : (g^x, \text{Sign}_{\text{SK}_B}(g^x))
\]

\(A \) receives \((g^x, S)\) and checks whether \(\text{Vrfy}_{\text{PK}_B}(g^x, S) = 1 \).

If this succeeds, \(A \) calculates \(K = \text{KDF}((g^x)^y) \) and sends:

\[
A \to B : (g^y, \text{Sign}_{\text{SK}_A}(g^y), A, \text{Enc}_K(T))
\]

\(B \) receives \((g^y, S, N, C)\) where \(N \) is a customer name, looks up \(N \)’s public key \(\text{PK}_N \), and checks that \(\text{Vrfy}_{\text{PK}_N}(g^y, S) = 1 \); if successful, \(B \) decrypts \(\text{Dec}_{\text{KDF}(g^{xy})}(C) = T \) and credits it to the account belonging to \(N \).

Let Mallory (\(M \)) be an active adversary who is also a customer of the bank. Show that your colleague’s scheme is not secure: when Alice wants to deposit a token \(T \) in her account, \(M \) can cause his account to be credited instead. [7 marks]

(d) Suggest an alternative protocol that meets the requirements in part (c) while avoiding the problems in your colleague’s scheme, and briefly justify your design. [7 marks]