COMPUTER SCIENCE TRIPOS Part II – 2022 – Paper 8

3 Cryptography (mk428)

- (a) Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be a public-key encryption scheme that offers CCA security. Explain the concept of *forward secrecy*, why it might be useful, and why Π does not offer it. [3 marks]
- (b) Explain how the Diffie–Hellman key exchange works, and the assumptions under which it is secure. [3 marks]
- (c) You and your colleague are asked to design a payments system based on an authenticated symmetric encryption scheme (Enc, Dec), a digital signature scheme (Gen, Sign, Vrfy), a Diffie-Hellman group with generator g, and a key derivation function KDF. The requirements are as follows:
 - Let B be a bank, and let Alice (A) be a customer of B. Say A has a digital token T (which we take to be an arbitrary bit string) that is worth money. A can deposit that money in her account by securely sending T to B.
 - You may assume that the bank knows the public keys of all of its customers, and that each customer knows the public key of the bank.
 - As the token T is sent over the network, it must be kept confidential from active attackers. Moreover, the protocol must provide forward secrecy.

Let $(PK_A, SK_A) \leftarrow \text{Gen}$ be Alice's signature keypair, and $(PK_B, SK_B) \leftarrow \text{Gen}$ be the bank's keypair. Your colleague proposes using the following scheme:

 $B \to A: (g^x, \operatorname{Sign}_{SK_B}(g^x))$

A receives (g^x, S) and checks whether $\mathsf{Vrfy}_{PK_B}(g^x, S) = 1$. If this succeeds, A calculates $K = \mathsf{KDF}((g^x)^y)$ and sends:

 $A \to B: (g^y, \operatorname{Sign}_{SK_A}(g^y), A, \operatorname{Enc}_K(T))$

B receives (g^y, S, N, C) where N is a customer name, looks up N's public key PK_N , and checks that $\mathsf{Vrfy}_{PK_N}(g^y, S) = 1$; if successful, B decrypts $\mathsf{Dec}_{\mathsf{KDF}}(g^{xy})(C) = T$ and credits it to the account belonging to N.

Let Mallory (M) be an active adversary who is also a customer of the bank. Show that your colleague's scheme is not secure: when Alice wants to deposit a token T in her account, M can cause his account to be credited instead.

[7 marks]

(d) Suggest an alternative protocol that meets the requirements in part (c) while avoiding the problems in your colleague's scheme, and briefly justify your design. [7 marks]