COMPUTER SCIENCE TRIPOS Part IB, Part II 50% - 2022 - Paper 7

10 Prolog (ijl20)

When answering this question ensure each relation has a comment giving a declarative reading of its behaviour. You should avoid unnecessary use of cut and not use extra-logical relations such as findall, assertz and not $(\+)$. Built-in library relations should not be assumed. The notmember relation given in the first part may be re-used if required.

(a) Assume the built-in operator \= meaning not unifiable with, and a relation notmember(+A,+L) defined thus:

notmember(_,[]). notmember(A,[H|T]) :- A \geq H, notmember(A,T).

Explain where *facts*, *rules*, *atoms*, *compound terms* have been used. Why does notmember(A,[a,b,c]) fail? [2 marks]

(b) Write a reverse(+A,?B) relation suitable for *last call optimisation*. What makes it suitable for LCO? [3 marks]

(c)	This small diagram represents our world map,	house \longrightarrow lane
	with the arrows representing downhill lanes	\downarrow \downarrow
	between places on the map.	field \longrightarrow forest
		\downarrow \downarrow
		lake \longrightarrow cave

Represent these downhill lanes with a downhill(?A,?B) relation. [2 marks]

- (d) Assuming downhill(?A,?B) is acyclic, define a relation downhill_path(?A,?B) which succeeds if place B can be reached from place A along downhill lanes.
 [2 marks]
- (e) Define a relation linked(?A,?B) which succeeds if a lane directly connects places
 A and B downhill or the reverse, e.g. :- linked(cave,forest) should succeed.
 [2 marks]
- (f) Define a relation linked_path(+A,+B,?Path) which finds a linked path between places A and B, reporting the ordered list of places visited from A to B in the Path argument.
- (g) Assume a relation danger(?A,?D) where D gives a numerical value for the danger at each place A, for example :- danger(forest,X) might succeed with X=4. Extend your linked_path relation so that it also returns the sum of the danger values along the path, i.e. linked_path(+A,+B,?Path,?Danger) [3 marks]