8 Data Science (djw1005)

Let \((E_0, E_1, \ldots)\) be a Markov chain generated by

\[E_{t+1} = \lambda E_t + \text{Normal}(0, (1 - \lambda^2)\sigma^2) \]

where \(0 \leq \lambda < 1\).

(a) What is meant by “stationary distribution”? Show that \(\text{Normal}(0, \sigma^2)\) is a stationary distribution for this Markov chain. [3 marks]

(b) What is meant by “memorylessness”? Give an expression for the log likelihood of a sequence of values \((e_1, \ldots, e_n)\), given the value for \(E_0\). [4 marks]

Klaus Hasselmann, who won the 2021 Nobel Prize, studied climate models in which short-term random fluctuations can have longer-term effects. Suppose we’re given a dataset \((y_0, y_1, \ldots, y_n)\) of temperatures at timepoints \(t = 0, 1, \ldots, n\), and we use a Hasselmann-style model,

\[Y_t = \alpha + \beta \sin(2\pi \omega t) + \gamma t + E_t \]

where \((E_0, E_1, \ldots)\) is a Markov chain as described above, and \(\alpha, \beta,\) and \(\gamma\) are unknown parameters to be estimated.

(c) Give an expression for the log likelihood of \((y_1, \ldots, y_n)\), given the value for \(Y_0\). [Hint: First find the distribution of \(Y_{t+1}\) given \(Y_t\).] [6 marks]

(d) What is meant by a “linear model”? Write out a linear model that can be used to estimate the unknown parameters \(\alpha, \beta,\) and \(\gamma\) (treating all other parameters as known). Identify the feature vectors. [7 marks]