7 Data Science (djw1005)

We are given a numerical dataset \(\{x_1, x_2, \ldots, x_n\} \). We wish to estimate the 99th percentile, and to find a confidence interval for it. Here are three approaches:

(a) We may decide to model the datapoints as independent samples from the Pareto(1, \(\alpha \)) distribution. Then, the 99th percentile is the value \(q \) such that \(\mathbb{P}(\text{Pareto}(1, \alpha) \leq q) = 0.99 \).

(i) Find the maximum likelihood estimator for \(\alpha \). [3 marks]

(ii) Find \(q \) as a function of \(\alpha \). [2 marks]

(iii) Explain how to use parametric resampling to find a confidence interval for \(q \). Give pseudocode. [4 marks]

(b) We may decide to estimate the 99th percentile by simply sorting the dataset and reading off the value in position \(\text{int}(0.99n) \).

Explain how to use nonparametric resampling to find a confidence interval for it. Give pseudocode. Under what circumstances would you expect the result to be unreliable? [6 marks]

(c) We may decide to use computational Bayesian methods to find the confidence interval. Explain how, stating your model precisely. Give pseudocode. [5 marks]

Hint. If \(X \sim \text{Pareto}(1, \alpha) \) then it has cumulative distribution function

\[
\mathbb{P}(X \leq x) = \begin{cases}
1 - x^{-\alpha} & \text{if } x \geq 1 \\
0 & \text{if } x < 1.
\end{cases}
\]