COMPUTER SCIENCE TRIPOS Part IB – 2022 – Paper 6

6 Computation Theory (amp12)

- (a) Explain why the Church-Rosser Theorem implies that any λ -term that is β -convertible $(=_{\beta})$ to a term in β -normal form is in fact β -reducible (\twoheadrightarrow) to one in β -normal form. [2 marks]
- (b) Let Bnf denote the set of λ -terms that have a β -normal form. Give with justification an example of two closed λ -terms I and Ω with I \in Bnf and $\Omega \notin$ Bnf. [3 marks]
- (c) Suppose that # is a bijection between the set of all λ -terms and the set \mathbb{N} of all natural numbers and that there are recursive functions $\alpha : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and $\nu : \mathbb{N} \to \mathbb{N}$ satisfying for all λ -terms M, N and numbers n that

$$\alpha(\#(M), \#(N)) = \#(MN) \tag{1}$$

$$\nu(n) = \#(\underline{n}) \tag{2}$$

where the λ -term <u>n</u> is the nth Church numeral. Writing $\lceil M \rceil$ for $\underline{\#}(M)$, show that there are closed λ -terms App and Num satisfying for all λ -terms M, N that

$$\mathsf{App}\,^{\ulcorner}M^{\urcorner}^{\ulcorner}N^{\urcorner} =_{\beta} ^{\ulcorner}M N^{\urcorner} \tag{3}$$

$$\operatorname{Num} \lceil N \rceil =_{\beta} \lceil \lceil N \rceil \qquad (4)$$

(Any general properties of partial recursive functions with respect to λ -calculus you use should be carefully stated, but need not be proved.) [6 marks]

(d) Consider the following property of a closed λ -term F (where $\lceil M \rceil$ is as in part (c)):

for all
$$\lambda$$
-terms M ,
$$\begin{cases} F \ulcorner M \urcorner =_{\beta} \underline{0} & \text{if } M \in Bnf \\ F \ulcorner M \urcorner =_{\beta} \underline{1} & \text{if } M \notin Bnf \end{cases}$$
(7)

(e) Deduce from part (d) that $\{\#(M) \mid M \in Bnf\}$ is an undecidable set of numbers. [3 marks]