
8

COMPUTER SCIENCE TRIPOS Part IA – 2022 – Paper 1

Algorithms 1 (fms27)

Given an array a containing n items to be sorted, a bottom-up implementation of
mergesort performs, non-recursively, several passes on a.

(a) Derive p(n), the number of passes performed. [1 mark]

(b) Derive m(n, i), the number of merge operations performed in pass i, where passes
are numbered starting from 0 and ending at p(n)− 1. [2 marks]

(c) A programmer has (correctly) read that an array a of n elements can be sorted
with bottom-up mergesort using scratch workspace of size dn/2e elements. The
programmer decides to implement this by requiring the caller to arrange that a
starts with n cells containing the values to be sorted, followed by dn/2e cells to
be used as workspace, and produces the following pseudocode:

0 def bums(a, n):

1 """Bottom-up-merge-sort a[:n], using a[n:] as scratch space."""

2 assert len(a[n:]) >= n/2 # NB: here n/2 is not integer for odd n

3 s = 1 # Size of the chunks to be merged in this pass

4 for pass between 0 included and p(n) excluded:

5 for pair between 0 included and m(n, pass) excluded:

6 copy a[s*pair:s*(pair+1)] to a[n:n+s]

7 srcA = n

8 maxA = n + s

9 srcB = s * (pair+1)

10 maxB = max(s * (pair+2), n)

11 dst = s * pair

12 while (srcA < maxA) or (srcB < maxB):

13 if a[srcA] < a[srcB]:

14 a[dst++] = a[srcA++]

15 else:

16 a[dst++] = a[srcB++]

17 s = 2 * s

This pseudocode contains three serious bugs. For each of them:

(i) Explain the bug clearly, focusing on the difference between programmer’s
intention and the code as written; then suggest how to fix it (no pseudocode
is required). [3 marks each]

(ii) In the spirit of unit testing, exhibit a simple input pair (a and n) that
triggers that bug but neither of the others, contrasting intended and actual
behaviour. [2 marks each]

(d) Assuming the bugs in Part (c) are corrected, is this bottom-up mergesort
implementation stable? Give reasons. [2 marks]

1


