Consider a Dictionary whose keys belong to a totally ordered set, and whose values are real numbers. We would like to implement an additional operation: \texttt{partialsum}(k, k') which sums all values whose key \(\ell \) satisfies \(k \leq \ell < k' \).

We can implement this Dictionary using a balanced binary search tree, and implement \texttt{partialsum} by first searching for \(k \) then calling \texttt{successor} until we reach a key \(\ell \geq k' \) or we run out of keys. (The \texttt{successor} function, when applied to a node in the tree whose key is \(k \), returns the node with the smallest key that is \(> k \), if one exists.)

We can analyse the cost of \texttt{partialsum} by treating it as a sequence of operations: one search, then one or more calls to \texttt{successor}. We can analyse the cost of this sequence using the potential method.

\[(a)\] In the tree shown above, label nodes by the order in which they are visited by successive calls to \texttt{successor}, starting from the shaded node. [2 marks]

\[(b)\] Give pseudocode for the \texttt{successor} function. Show that the worst-case cost of \texttt{successor} is \(\Omega(\log n) \), where \(n \) is the number of items in the tree. [5 marks]

\[(c)\] Consider the function

\[\Phi(k) = 2r_k + D - d_k \]

where \(D \) is the depth of the tree, \(r_k \) is the number of right-child steps on a path from root to the node with key \(k \), and \(d_k \) is depth of that node. Augment \(\Phi \) by defining its value at an ‘initial empty’ state, which you should define. Explain why your augmented function is a potential function. [3 marks]

\[(d)\] Show that \texttt{partialsum} is \(O(m + \log n) \), where \(n \) is the number of items in the tree and \(m \) is the number of calls to \texttt{successor}. Explain your reasoning. [10 marks]