
5

COMPUTER SCIENCE TRIPOS Part II – 2021 – Paper 9

Computer Vision (jgd1000)

(a) Inferring a 3D object shape from shading variation across a surface depends on
assumptions about how Lambertian or how specular each area is. For a surface
reflectance map φ(i, e, g) having a mixed form,

φ(i, e, g) =
s(n+ 1)(2 cos(i) cos(e)− cos(g))n

2
+ (1− s) cos(i)

give a range of values for s and n that would arise for: (i) a matte surface, and
(ii) a glossy surface. What form of reflectance map φ(i, e, g) describes (iii) a
mirror, and what form describes (iv) the lunar surface? (v) Why is φ(i, e, g) as
specified above sometimes called the “Face Powder Equation”? (vi) How does
the lunar form of φ(i, e, g) explain why the full moon looks like a flat 2D penny
in the sky, rather than a 3D sphere like a ping-pong ball? [8 marks]

(b) A breakthrough in face recognition accuracy arose when machine learning on
big datasets minimised a loss function involving terms like ‖ f(xai ) − f(xpi ) ‖2
and ‖ f(xai )− f(xni ) ‖2 on triples of embeddings for f(xai ) (anchor faces), f(xpi )
(positive examples: same face), and f(xni ) (negative examples: different faces).

...

Batch

DEEP ARCHITECTURE L2 Triplet 
Loss

E
M
B
E
D
D
I
N
G

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.

Anchor

Positive

Negative

Anchor
Positive

Negative
LEARNING

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

in the end-to-end learning of the whole system. To this end
we employ the triplet loss that directly reflects what we want
to achieve in face verification, recognition and clustering.
Namely, we strive for an embedding f(x), from an image
x into a feature space Rd, such that the squared distance
between all faces, independent of imaging conditions, of
the same identity is small, whereas the squared distance be-
tween a pair of face images from different identities is large.

Although we did not a do direct comparison to other
losses, e.g. the one using pairs of positives and negatives,
as used in [14] Eq. (2), we believe that the triplet loss is
more suitable for face verification. The motivation is that
the loss from [14] encourages all faces of one identity to be
projected onto a single point in the embedding space. The
triplet loss, however, tries to enforce a margin between each
pair of faces from one person to all other faces. This al-
lows the faces for one identity to live on a manifold, while
still enforcing the distance and thus discriminability to other
identities.

The following section describes this triplet loss and how
it can be learned efficiently at scale.

3.1. Triplet Loss

The embedding is represented by f(x) ∈ Rd. It em-
beds an image x into a d-dimensional Euclidean space.
Additionally, we constrain this embedding to live on the
d-dimensional hypersphere, i.e. ‖f(x)‖2 = 1. This loss is
motivated in [19] in the context of nearest-neighbor classifi-
cation. Here we want to ensure that an image xai (anchor) of
a specific person is closer to all other images xpi (positive)
of the same person than it is to any image xni (negative) of
any other person. This is visualized in Figure 3.

Thus we want,

‖xai − xpi ‖22 + α < ‖xai − xni ‖22, ∀ (xai , xpi , xni ) ∈ T , (1)

where α is a margin that is enforced between positive and
negative pairs. T is the set of all possible triplets in the
training set and has cardinality N .

The loss that is being minimized is then L =

N∑

i

[
‖f(xai )− f(xpi )‖

2
2 − ‖f(xai )− f(xni )‖

2
2 + α

]
+
.

(2)
Generating all possible triplets would result in many

triplets that are easily satisfied (i.e. fulfill the constraint
in Eq. (1)). These triplets would not contribute to the train-
ing and result in slower convergence, as they would still
be passed through the network. It is crucial to select hard
triplets, that are active and can therefore contribute to im-
proving the model. The following section talks about the
different approaches we use for the triplet selection.

3.2. Triplet Selection

In order to ensure fast convergence it is crucial to select
triplets that violate the triplet constraint in Eq. (1). This
means that, given xai , we want to select an xpi (hard pos-
itive) such that argmaxxp

i
‖f(xai )− f(xpi )‖

2
2 and similarly

xni (hard negative) such that argminxn
i
‖f(xai )− f(xni )‖22.

It is infeasible to compute the argmin and argmax
across the whole training set. Additionally, it might lead
to poor training, as mislabelled and poorly imaged faces
would dominate the hard positives and negatives. There are
two obvious choices that avoid this issue:

• Generate triplets offline every n steps, using the most
recent network checkpoint and computing the argmin
and argmax on a subset of the data.

• Generate triplets online. This can be done by select-
ing the hard positive/negative exemplars from within a
mini-batch.

Here, we focus on the online generation and use large
mini-batches in the order of a few thousand exemplars and
only compute the argmin and argmax within a mini-batch.

To have a meaningful representation of the anchor-
positive distances, it needs to be ensured that a minimal
number of exemplars of any one identity is present in each
mini-batch. In our experiments we sample the training data
such that around 40 faces are selected per identity per mini-
batch. Additionally, randomly sampled negative faces are
added to each mini-batch.

Instead of picking the hardest positive, we use all anchor-
positive pairs in a mini-batch while still selecting the hard
negatives. We don’t have a side-by-side comparison of hard
anchor-positive pairs versus all anchor-positive pairs within
a mini-batch, but we found in practice that the all anchor-
positive method was more stable and converged slightly
faster at the beginning of training.

This approach treats false matches and failures-to-match as equally bad errors.
But their costs are vastly different for a 1-to-1 face verification system (that just
makes a ‘yes/no’ decision), versus a face identification system that may need
to search a database the size of an entire nation, returning an actual identity.
Propose a parameterised loss function for an algorithm that can be tuned for
the different costs of the two error types, false matches and failures-to-match.
Explain how its parameter(s) should reflect the numbers of potential false match
collisions that must be avoided in a large-scale search. [6 marks]

(c) A surprising aspect of human vision is the prevalence of quite striking illusions,
which cannot be defeated even by being aware of them. Are visual illusions
“bugs”, or “features” that should be built into computer vision algorithms?
Consider in your answer both the tiling illusion (in which all horizontal lines
really are parallel), and the hollow mask illusion below (in which the face always
appears convex even when the mask is concave in presentation).

[6 marks]

1


