14 Quantum Computing (sjh227)

(a) Find the eigenvectors, eigenvalues and spectral decomposition of the observable

\[A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

and give the outcome of measuring the expectation of the observable on the states:

(i) \(|0\rangle \)

(ii) \(\frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \)

(iii) \(\frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle \)

[8 marks]

(b) A quantum mechanical system has Hamiltonian

\[H = H_1 + 2H_2 \]

It is desired to use a quantum computer to approximately simulate the operator \(e^{-iHt} \) for some \(t \). It is possible to build quantum circuits \(U_1 \) and \(U_2 \) to perform the operations

\[U_1 = e^{-iH_1t} \]
\[U_2 = e^{-iH_2t} \]

Give a circuit, \(U \), consisting of one of more instances of \(U_1 \) and \(U_2 \) that approximates \(e^{-iHt} \) such that \(e^{-iHt} - U = O(t^3) \). Show your calculations to verify that the circuit does indeed achieve this. [8 marks]

(c) Quantum Phase Estimation can be used to estimate the ground state energy of quantum mechanical systems. The Inverse Quantum Fourier Transform is a key component of Quantum Phase Estimation. Give the circuit for the 2-qubit Inverse Quantum Fourier Transform using only gates from the set \{H, CT, CNOT\}, where CT is a controlled T gate. [4 marks]