6 Denotational Semantics (mpf23)

A right adjoint of a monotone function \(f : P \to Q \) between posets is a monotone function \(g : Q \to P \) such that \(\text{id}_P \subseteq g \circ f \) and \(f \circ g \subseteq \text{id}_Q \).

Let \(f : P \to Q \) be a monotone function with a right adjoint \(g : Q \to P \).

(a) For \(p \in P \) and \(q \in Q \), prove that \(f(p) \sqsubseteq q \) if, and only if, \(p \sqsubseteq g(q) \). [4 marks]

Let \(h : P \to P \) and \(\ell : Q \to Q \) be monotone functions such that \(f \circ h = \ell \circ f : P \to Q \).

(b) Prove that if \(h \) has a least pre-fixed point \(\text{fix}(h) \) then \(f(\text{fix}(h)) \) is a least pre-fixed point of \(\ell \). [8 marks]

Further assume that \(g \circ f = \text{id}_P \), in which case \(f \) is said to be an embedding and \(g \) a projection.

(c) Prove that if \(\ell \) has a least pre-fixed point \(\text{fix}(\ell) \) then \(g(\text{fix}(\ell)) \) is a least pre-fixed point of \(h \). [8 marks]