
8

COMPUTER SCIENCE TRIPOS Part IB – 2021 – Paper 4

Semantics of Programming Languages (nk480)

Languages like Forth and Postscript are stack-based languages ; they store
intermediate values on a stack rather than binding to variable names. In this question
we will look at how to give a type system and operational semantics for a simple
stack-based language. The syntax and informal meaning of our language is given by:

e ::= n Push the numeral n on the stack
| b Push the Boolean b on the stack
| Add Replace the top two stack elements with their sum
| Eql Replace the top two stack elements with the result

of comparing them for equality
| Cond(e1, e2) Delete the top stack element and execute e1 or e2,

depending on if the top of the stack was True or False
| Skip No-op
| e1; e2 Run e1 and then e2

v ::= b | n Values
s ::= · | s, v Stacks

τ ::= bool | num Types
Γ ::= · | Γ, τ Stack Types

We take a value v to be a Boolean or numeral, and define a stack s to be a stack
of values (growing at the right). Correspondingly, there are types bool and num for
values, and stack types Γ for stacks s.

The small-step operational semantics is then defined by a transition relation
〈e1 | s1〉 7→ 〈e2 | s2〉. One rule for this relation is:

〈Add | s, n,m〉 7→ 〈Skip | s, n+m〉

The typing relation is given as a relation Γ ` e a Γ′, which means that e, when run
with a stack of shape Γ, yields a stack of shape Γ′. One rule for this relation is:

Γ, num, num ` Add a Γ, num

(a) Give the remaining rules for the operational semantics. [7 marks]

(b) Give the remaining rules for the typing judgement. [7 marks]

(c) Formulate and state the progress and preservation lemmas for this language.
[6 marks]

1

