COMPUTER SCIENCE TRIPOS Part IB – 2021 – Paper 4

8 Semantics of Programming Languages (nk480)

Languages like FORTH and POSTSCRIPT are *stack-based languages*; they store intermediate values on a stack rather than binding to variable names. In this question we will look at how to give a type system and operational semantics for a simple stack-based language. The syntax and informal meaning of our language is given by:

e	::= 	$rac{n}{\underline{b}}$ Add Eql	Push the numeral n on the stack Push the Boolean b on the stack Replace the top two stack elements with their sum Replace the top two stack elements with the result of comparing them for equality
		$Cond(e_1, e_2)$	Delete the top stack element and execute e_1 or e_2 , depending on if the top of the stack was True or False
		Skip	No-op
	İ		Run e_1 and then e_2
v	::=	$\underline{b} \mid \underline{n}$	Values
s	::=	$\begin{array}{c c} \underline{b} & \underline{n} \\ \cdot & \overline{s, v} \end{array}$	Stacks
		$\begin{array}{c c} bool & & num \\ \cdot & & \Gamma, \tau \end{array}$	• -

We take a value v to be a Boolean or numeral, and define a stack s to be a stack of values (growing at the right). Correspondingly, there are types **bool** and **num** for values, and stack types Γ for stacks s.

The small-step operational semantics is then defined by a transition relation $\langle e_1 | s_1 \rangle \mapsto \langle e_2 | s_2 \rangle$. One rule for this relation is:

$$\overline{\langle \mathsf{Add} \, | \, s, \underline{n}, \underline{m} \rangle \mapsto \langle \mathsf{Skip} \, | \, s, \underline{n+m} \rangle}$$

The typing relation is given as a relation $\Gamma \vdash e \dashv \Gamma'$, which means that e, when run with a stack of shape Γ , yields a stack of shape Γ' . One rule for this relation is:

$\overline{\Gamma, \mathsf{num}, \mathsf{num}} \vdash \mathsf{Add} \dashv \Gamma, \mathsf{num}$

- (a) Give the remaining rules for the operational semantics. [7 marks]
- (b) Give the remaining rules for the typing judgement. [7 marks]
- (c) Formulate and state the progress and preservation lemmas for this language. [6 marks]