
3

COMPUTER SCIENCE TRIPOS Part IB – 2021 – Paper 4

Compiler Construction (tgg22)

(a) Suppose we are writing a compiler for an ML-like language and we want to
employ the equation

(map f l1) @ (map f l2) = map f (l1 @ l2)

as a left-to-right rewrite rule for optimisation. The symbol @ represents list
append.

Discuss the merits of this idea. Is it always correct? If so, state clearly what
assumptions you are making about @ and map. [5 marks]

(b) A compiler’s front-end will often expand some syntactic constructs into lower-
level representations. Consider the following fragment for the abstract syntax
of a SLANG-like language.

type var = string

type exp =

(* abstract syntax *) (* concrete syntax *)

| Var of var (* x *)

| Project of int * exp (* proj i e *)

| Tuple of exp list (* (e1, e2, ..., en) *)

| Let of var * exp * exp (* let x = e1 in e2 *)

| Apply of exp * exp (* e1 e2 *)

| Function of var * arg_pattern * exp (* fun f p = e *)

and arg_pattern =

| APvar of var (* x *)

| APtuple of arg_pattern list (* (p1, p2, ... pn) *)

This language has general projections for n-tuples so

proj i (e1, e2, · · · , ek)

will evaluate to vi, the value of ei. If i is not in the range between 1 and k there
will be a run-time error.

In this language we can write functions with simple (possibly nested) patterns
for function arguments:

fun f (a, b, (c, (d, e)) = b a

[continued . . . ]

1



Now suppose we want our front-end to eliminate such patterns. That is, we
want to write a function of type

eliminate_tuple_patterns : exp -> exp

so that the resulting expression contains functions with patterns only of the form
APvar x for some (new) variable x. For example, the code for f above should
be translated to a semantically equivalent expression of the form

fun f x = ...

that contains only simple variable arguments (that is, only APvar patterns in
the abstract syntax).

Your task is to write this function in OCaml. You can assume that you have a
function for generating fresh variable strings.

new_var : unit -> string

[15 marks]

2


