2 Digital Electronics (ijw24)

The figure below shows a circuit using an N-channel MOSFET, along with a table giving the relationship between V_{DS} and I_{DS} for various values of V_{DS}, at $V_{DD} = 4$ V and $V_{GS} = 4$ V.

<table>
<thead>
<tr>
<th>V_{DS}(mV)</th>
<th>160</th>
<th>320</th>
<th>470</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DS}(mA)</td>
<td>48</td>
<td>92</td>
<td>130</td>
</tr>
</tbody>
</table>

(a) Calculate the value of resistor R and the power dissipated in it when $V_{DS} = 160$ mV.

(b) A capacitor C is connected between the source and drain terminals of the MOSFET. After the MOSFET turns OFF at $t = 0$, the output signal V_2 as a function of time t is given by $V_2 = V_{DD}(1 - e^{-t/CR})$. Assume that prior to $t = 0$, the MOSFET is ON and $V_2 = 0$ V.

(i) Determine an expression for the time taken t_r, for the output signal V_2 to rise from 20% to 80% of its maximum value.

(ii) What is the rise time t_r, if $C = 0.1$ μF and R takes the value calculated in Part (a)?

(iii) The value of R is changed so as to reduce the rise time to half that in Part (b)(ii). What is the new value of R?

(iv) Using the value of R calculated in Part (b)(iii), what is the power dissipated in R when the MOSFET is ON (i.e., when $V_{GS} = 4$ V), and assuming that $V_2 = 320$ mV?

(v) Explain how the problem of high static power consumption seen in the N-channel MOSFET circuit can be eliminated.

[9 marks]
(c) The logic gate in the following figure has 3 inputs, \(A, B, \) and \(C, \) and a single output \(Y. \) Determine the truth-table for the gate input to output function, and then determine a simplified Boolean expression for output \(Y \) in terms of \(A, B, \) and \(C. \)