COMPUTER SCIENCE TRIPOS Part II – 2020 – Paper 9

7 Denotational Semantics (mpf23)

- (a) (i) Define the notion of admissible subset of a domain and state Scott's fixed point induction principle. [4 marks]
 - (*ii*) Let (D, \sqsubseteq_D) and (E, \sqsubseteq_E) be domains and let $f : D \to E$ and $g : E \to D$ be continuous functions.

Using Scott's fixed point induction principle prove

- (A) $fix(f \circ g) \sqsubseteq_E f(fix(g \circ f))$
- (B) $f(fix(g \circ f)) \sqsubseteq_E fix(f \circ g)$

[8 marks]

- (b) (i) Define the contextual-equivalence relation $P_1 \cong_{\text{ctx}} P_2 : \tau$ for pairs of closed PCF expressions P_1, P_2 and a PCF type τ . [2 marks]
 - (*ii*) Prove or disprove the following statement.

For every pair of PCF types σ, τ and every pair of closed PCF expressions M of type $\sigma \to \tau$ and N of type $\tau \to \sigma$,

$$\mathbf{fix}\big(\mathbf{fn}\ y:\tau.\ M(N(y))\big)\cong_{\mathrm{ctx}} M\big(\mathbf{fix}\big(\mathbf{fn}\ x:\sigma.\ N(M(x))\big)\big):\tau$$

[6 marks]