6 Cryptography (mgk25)

(a) Consider a message-authentication code Mac expected to provide existential unforgeability under adaptive chosen-message attack.

(i) What requirement does existential unforgeability impose on any padding function applied to the message by Mac and why? [4 marks]

(ii) What is an example of a padding function that satisfies that requirement? [2 marks]

(b) While reviewing the MacGyver burglar alarm system, you notice that a sensor S uses the following stream authentication protocol to report its status to the controller C once every second over a data wire:

$$
C \rightarrow S : R \quad \text{with } R \in_R \{0, 1\}^{128}
$$

$$
S \rightarrow C : (M_1, T_1) \quad \text{with } T_1 = \text{trunc}_{32}(\text{Mac}_K(M_1, R))
$$

$$
S \rightarrow C : (M_2, T_2) \quad \text{with } T_2 = \text{trunc}_{32}(\text{Mac}_K(M_2, T_1))
$$

$$
\vdots
$$

$$
S \rightarrow C : (M_i, T_i) \quad \text{with } T_i = \text{trunc}_{32}(\text{Mac}_K(M_i, T_{i-1}))
$$

The controller C picks a new 128-bit random value R when the system is powered up. Each message (M_i, T_i) is sent i seconds after that. The messages M_i are normally all identical, of the form $M = 0$ meaning “no burglary has happened in the last second”. Mac is a 128-bit message-authentication code function, using a private key K shared between S and C. Because of the very limited data rate available on the alarm-wire interface, the output of Mac is truncated to the first 32 bits.

(i) How can an attacker, who has been observing this communication since power up, eventually predict future tags T_i for the constant message $M_i = M$? [4 marks]

(ii) How long will it take, on average, after powerup until the attacker can start sending simulated sensor messages? [4 marks]

(iii) What security implication does the predictability of message-authentication codes from a sensor have for a burglar alarm system? [2 marks]

(iv) How can you improve the protocol to practically eliminate the risk of that attack, without increasing the number of bits transmitted over the wire? [4 marks]