15 Types (nk480)

(a) Consider System F extended with existential types, products, and a natural number type.

(i) Give an existential type corresponding to an abstract type of booleans with constructors for true and false, as well as a conditional test (if-then-else) operation. [3 marks]

(ii) Give an implementation of this type, using the natural numbers as the representation of booleans. [4 marks]

(b) Suppose we extend the simply-typed lambda calculus with the ability to raise exceptions with the `fail` construct, and the ability to catch exceptions with the `try e_0 except e_1` construct. Suppose also that we track exceptions monadically, with the type `Exn A` representing possibly-failing computations of `A`.

(i) Give a typing rule for signalling an error with `fail`. [2 marks]

(ii) Give a typing rule for trapping an error with `try e_0 except e_1`. Does your type for this term have an effect? Justify your design. [5 marks]

(c) Consider the simply-typed lambda calculus extended with natural numbers and reference types, but without monadic effect tracking.

(i) Give an expression of type `1 → N`, which evaluates to a function which counts the number of times it has been called. [2 marks]

(ii) Without using explicit recursion, give an expression and its type in the simply-typed lambda calculus with references whose execution never halts. [4 marks]