10 Machine Learning and Bayesian Inference (sbh11)

The central limit theorem tells us that, if \(X_i \) are random variables, \(\mu \) is the mean of \(X_i \) and \(\sigma^2 \) is the variance of \(X_i \) then, under suitable conditions

\[
\frac{\hat{X}_n - \mu}{\sigma/\sqrt{n}} \rightarrow N(0,1)
\]

where \(N(0,1) \) denotes the normal density with mean 0 and variance 1, and

\[
\hat{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i.
\]

(a) Let \(Y \) have density \(N(0,1) \). We know that, for a parameter \(p \), there is a constant \(z_p \) such that

\[
\Pr(-z_p \leq Y \leq z_p) > p.
\]

Show that with probability at least \(p \), the quantity \(\mu \) as defined above is in the interval described by \(\hat{X}_n \pm z_p(\sigma/\sqrt{n}) \). [3 marks]

(b) The quantity \(\hat{X}_n \) can be regarded as an estimate of \(\mu \). If the random variables \(X_i \) take values in \(\{0,1\} \), and are also independent and identically distributed, explain why it might make sense to estimate \(\sigma^2 \) as

\[
\sigma^2 \simeq s = \hat{X}_n(1 - \hat{X}_n).
\]

[3 marks]

(c) Define what it means for an estimate such as that suggested in Part (b) to be unbiased. Is the estimate suggested in Part (b) unbiased? Provide a proof of your answer. [7 marks]

(d) We have two binary classifiers \(h_1 \) and \(h_2 \), and a test set \(s \) containing 1000 examples. During testing, \(h_1 \) makes 105 errors and \(h_2 \) makes 120 errors. Explain how we can estimate a confidence interval of the kind defined in Part (a) for the difference \((\text{er}(h_1) - \text{er}(h_2)) \) between the true error probabilities \(\text{er}(h_1) \) and \(\text{er}(h_2) \) of the classifiers. Your answer should be careful to state any assumptions or approximations being made. [7 marks]