8 Hoare Logic and Model Checking (jp622)

Consider commands C composed from assignments $X := E$ (where X is a program variable, and E is an arithmetic expression), heap allocation $X := \text{alloc}(E_1, \ldots, E_n)$, heap assignment $[E_1] := E_2$, heap dereference $X : [E]$, disposal of heap locations $\text{dispose}(E)$, the no-op skip, sequencing $C_1; C_2$, conditionals $\text{if} \ B \ \text{then} \ C_1 \ \text{else} \ C_2$ (where B is a boolean expression), and loops $\text{while} \ B \ \text{do} \ C$. null is 0.

Recall the separation logic partial list representation predicates:

\[
\begin{align*}
\text{plist}(t, [], u) &= (t = u) \land \text{emp} \\
\text{plist}(t, h :: \alpha, u) &= \exists y. ((t \mapsto h) \ast ((t + 1) \mapsto y) \ast \text{plist}(y, \alpha, u))
\end{align*}
\]

Circular lists can be represented by $\text{clist}(t, \alpha) = \text{plist}(t, \alpha, [t]) \land (\alpha = [] \Rightarrow t = \text{null})$.

(a) Assuming $\vdash \{P_1\} C_1 \{Q_1\}$ and $\vdash \{P_2\} C_2 \{Q_2\}$:

(i) explain precisely why $\vdash \{P_1 \ast P_2\} C_1; C_2 \{Q_1 \ast Q_2\}$ [2 marks]

(ii) give a counterexample to $\vdash \{P_1 \land P_2\} C_1; C_2 \{Q_1 \land Q_2\}$. [1 mark]

(b) Give a proof outline for the following circular list ‘next’ triple:

\[
\{\text{clist}(X, t :: \alpha)\} \ \text{X} := [X + 1] \ \{\text{clist}(X, \alpha + [t])\}
\]

[3 marks]

(c) Give a loop invariant (no need for a proof outline) for the following circular list ‘length’ triple:

\[
\{\text{clist}(X, \alpha)\}
\begin{align*}
\text{if} \ X = \text{null} \ &\text{then} \ Y := 0 \\
\text{else} \ (Z := [X + 1]; Y := 1; \text{while} \ Z \neq X \ \text{do} \ (Z := [Z + 1]; Y := Y + 1))
\end{align*}
\]

\[
\{\text{clist}(X, \alpha) \ast Y = \text{length}(\alpha)\}
\]

[3 marks]

(d) Give a loop invariant (no need for a proof outline) for the following triple for a ‘previous’ operation on non-empty circular lists:

\[
\{\text{clist}(X, t :: \alpha)\}
\begin{align*}
Z := X; Y := [X + 1]; (\text{while} \ Y \neq X \ \text{do} \ (Z := Y; Y := [Y + 1])); \ X := Z \\
\{\text{clist}(X, t :: \alpha)\}
\end{align*}
\]

[4 marks]

(e) Give a loop invariant (no need for a proof outline) for the following triple for a ‘dial to minimum’ operation on non-empty circular lists:

\[
\{\text{clist}(X, \alpha_1 + [t] + \alpha_2) \land \text{sorted}(t :: \text{merge}([\alpha_1], [\alpha_2]))\}
\begin{align*}
Z := X; M := [X]; Y := [X + 1]; \\
(\text{while} \ Y \neq Z \ \text{do} \\
(N := [Y]; (\text{if} \ N < M \ \text{then} \ X := Y \ \text{else} \ \text{skip}); Y := [Y + 1])); \\
\{\text{clist}(X, [t] + \alpha_2 + \text{reverse}([\alpha_1]))\}
\end{align*}
\]

[5 marks]

(f) Describe precisely all pairs of a stack and a heap that satisfy

\[
\exists y, z. ((X \mapsto y \ast y \mapsto z \ast z \mapsto X) \land Y = 0)
\]

[2 marks]