COMPUTER SCIENCE TRIPOS Part IB - 2020 - Paper 6

7 Foundations of Data Science (djw1005)

Consider the probability model

where $(X_0, X_1, ...)$ is a Markov chain on state space $\{0, 1\}$ with transition probabilities $P_{01} = p$, $P_{10} = q$; and where each Y_i is normally distributed with mean X_i and variance σ^2 .

We are given a sequence of observations $(y_1, y_2, ..., y_n)$, and we wish to make an inference about the unobserved values $(X_1, X_2, ..., X_n)$. We will take 0 , <math>0 < q < 1, and $\sigma > 0$ to be known, and we will assume that X_0 is sampled from the Markov chain's stationary distribution.

- (a) Write out the transition matrix for the Markov chain $(X_0, X_1, ...)$. Calculate its stationary distribution. [4 marks]
- (b) Writing \vec{X} for (X_0, X_1, \dots, X_n) , and writing \vec{Y} for (Y_1, \dots, Y_n) , and similarly \vec{x} and \vec{y} , find expressions for

$$\mathbb{P}(\vec{X} = \vec{x})$$
 and for $\mathbb{P}(\vec{Y} = \vec{y} \mid \vec{X} = \vec{x})$.

[4 marks]

- (c) Give pseudocode for a function rx(n) that generates a random \vec{X} . Give pseudocode to generate a weighted sample from the posterior distribution of \vec{X} conditional on the observed data $\vec{Y} = \vec{y}$. [8 marks]
- (d) Let $Z = n^{-1} \sum_{i=1}^{n} X_i$. Give pseudocode to find a 95% confidence interval for Z, conditional on the observed data $\vec{Y} = \vec{y}$. [4 marks]