8 Algorithms (fms27)

Reminder:

\[f(n) \in \Theta(g(n)) \]

\[\iff \exists n_0, c_1, c_2 \in \mathbb{R}_{>0} \text{ such that } \forall n > n_0 : 0 < c_1 g(n) \leq f(n) \leq c_2 g(n). \]

(a) For the bubblesort algorithm, state its best-case \(\Theta\) complexity and describe, for any given input of arbitrary size \(n\), one permutation that would trigger this best-case behaviour. Then give the corresponding permutation of \([0, 1, 2, 3, 4, 5, 6, 7, 7, 7]\). Then repeat the above for the worst case: state the \(\Theta\) complexity, saying when it is achieved, and exhibit as a concrete example a permutation of the 10 numbers given.

(b) Repeat Part (a) for the heapsort algorithm.

(c) Repeat Part (a) for the basic quicksort algorithm, where the pivot is simply chosen as the last element in the range.

(d) Write clear and efficient pseudocode to eliminate all duplicates from a linked list of \(n\) elements, without changing the order of the remaining elements. Then derive and justify its \(\Theta\) complexity.

(e) [Hint: The \(\Omega\) notation, like the \(\Theta\) notation, is typically used to describe the asymptotic behaviour of a worst-case cost function \(f(n)\). When we say, by extension, that a certain task has a complexity bound of \(\Omega(g(n))\), we mean that this bound applies to the worst-case cost function of every possible algorithm that could solve that task.]

Give a formula for \(f(n) \in \Omega(g(n))\), in a format similar to that of the Reminder above, and briefly explain it. Then derive, with a clear justification, a tight \(\Omega\) complexity bound for the task of eliminating all duplicates from a linked list of \(n\) elements.