8 Algorithms (fms27)

Reminder:

\[f(n) \in \Theta(g(n)) \]

\[\iff \exists n_0, c_1, c_2 \in \mathbb{R}_{>0} \text{ such that } \forall n > n_0 : 0 < c_1 g(n) \leq f(n) \leq c_2 g(n). \]

(a) For the bubblesort algorithm, state its best-case \(\Theta \) complexity and describe, for any given input of arbitrary size \(n \), one permutation that would trigger this best-case behaviour. Then give the corresponding permutation of \([0, 1, 2, 3, 4, 5, 6, 7, 7, 7]\). Then repeat the above for the worst case: state the \(\Theta \) complexity, saying when it is achieved, and exhibit as a concrete example a permutation of the 10 numbers given. [4 marks]

(b) Repeat Part (a) for the heapsort algorithm. [4 marks]

(c) Repeat Part (a) for the basic quicksort algorithm, where the pivot is simply chosen as the last element in the range. [4 marks]

(d) Write clear and efficient pseudocode to eliminate all duplicates from a linked list of \(n \) elements, without changing the order of the remaining elements. Then derive and justify its \(\Theta \) complexity. [4 marks]

(e) [Hint: The \(\Omega \) notation, like the \(\Theta \) notation, is typically used to describe the asymptotic behaviour of a worst-case cost function \(f(n) \). When we say, by extension, that a certain task has a complexity bound of \(\Omega(g(n)) \), we mean that this bound applies to the worst-case cost function of every possible algorithm that could solve that task.]

Give a formula for \(f(n) \in \Omega(g(n)) \), in a format similar to that of the Reminder above, and briefly explain it. Then derive, with a clear justification, a tight \(\Omega \) complexity bound for the task of eliminating all duplicates from a linked list of \(n \) elements. [4 marks]