1 Foundations of Computer Science (avsm2)

You need to write OCaml code to help a local park ranger count the different types of trees present in a region of Cambridgeshire woodland.

(a) Define an OCaml type `tree` that can distinguish between an `oak`, `birch` or `maple` tree, and also any other species with an arbitrary `string` name.

(b) Define two OCaml values with the following signatures:

 (i) `val describe : tree -> string` that accepts a `tree` parameter and returns a human-readable `string`.

 (ii) `val identify : string -> tree` that accepts a lowercase `string` parameter and returns a `tree`.

 Explain briefly how the OCaml compiler can statically check if you have handled all the input possibilities for the input parameters to `describe` and `identify`.

(c) Define a type `stree` that only distinguishes between three species `oak`, `birch` or `maple` and no others. Implement functions for the following signatures with similar functionality to the earlier `identify` function:

 `val identify_exn : string -> stree`
 `val identify_opt : string -> stree option`

 Briefly discuss the tradeoffs between your two approaches.

(d) You now need to implement a simple simulator before starting real surveys. Trees will occur in the following fixed infinite sequence: `oak`, `birch`, `oak`, `maple`, `maple`, and then repeat from the beginning.

 (i) Define a function `val spotter : unit -> stree` that will return the sequence of trees when called multiple times.

 (ii) Define a purely functional alternative `spotter` that calculates the next `stree` in sequence, using only the input arguments to the function to calculate the return value. Write down an example application of this function with the input arguments and the expected output result. (*Hint: you may need to pass in the complete sequence as one of the arguments.*)