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1 Advanced Algorithms

(a) (i) What is the approximation ratio of an approximation algorithm?
[2 marks|

(77) State the definitions of PTAS and FPTAS. [4 marks]

(b) Consider the two approximation algorithms for VERTEX-COVER from the lec-
tures (one greedy algorithm and one based on rounding a linear program).

(i) What are the approximation ratios of these two algorithms? [2 marks]

(7) Construct an input graph that demonstrates the tightness of the approx-
imation ratio of the greedy algorithm (for full marks, your construction
should work for any even number of vertices n). [3 marks]

(¢) Consider the following randomised algorithm to compute a solution of the

VERTEX-COVER problem for an unweighted graph G = (V| E):

Let C be the empty set
While E not empty do
Pick any edge e={u,v} from E
Choose x from {u,v} uniformly at random

Add x to C

Remove all edges incident to x from E
End While
Return C

() Explain briefly why the set C' returned is a valid vertex cover. [2 marks]

(i4) Find a lower bound on the probability that the algorithms returns an
optimal solution.
Hint: For each edge e = {u, v} picked by the algorithm consider the event
that the chosen vertex z € {u,v} added to C is also part of an optimal
cover. [4 marks|

(77) Given a lower bound p € (0,1) on the probability that this algorithm
returns an optimal solution, describe a new algorithm that returns an
optimal solution with probability at least d, for any given § € [p, 1).

[3 marks|
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2 Bioinformatics

(a)

You are given a table of gene expression data. Each row corresponds to a gene
and in the columns there is the gene expresson at different time steps (or different
experimental conditions). Discuss at least one method, with one example, to
identify genes with similar behaviour in time and the method’s complexity and
limitations. [4 marks]

Discuss with one example how the stiffness parameter affects soft k-means
clustering. [4 marks]

Describe the advantage of using suffix arrays to find matches in genome
sequencing. [4 marks|

Describe solutions to the problem of ‘bubbles’ in De Bruijn graphs of genomes.
[4 marks]

Describe opportunities and challenges presented by DNA storage of data
including a technique for indexed retrieval. [4 marks]

3 Business Studies

Giles Murchiston, a former PhD student now graduated, approaches you with a
potential Part IT project. He is interested in developing a new autonomous transport
system for Cambridge and would like to you to conduct a feasibility study given some
of the recent research results from the Department.

(a)

(0)

Describe five types of intellectual property that might have arisen from research
at the Department that Giles might need to consider licensing. [5> marks]

Given that a new transport system is likely to need investment, describe five
characteristics of the transport system you should investigate that investors

would be interested in. [10 marks]

When marketing the transport system describe five criteria Giles should consider
in relation to customer adoption. [5 marks]
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4 Comparative Architectures

(a) The performance of single-chip computers has improved rapidly over the past 40

(b)

(¢)

years. Describe the major turning points in computer architecture as technology,
applications and target markets have driven change. [10 marks]

Your processor supports simultaneous multithreading (SMT) and has hardware
support for two threads. What characteristics would you consider when deciding
which two threads would be best to schedule together? [4 marks]

An analysis of a multicore processor used within a datacentre suggests that its
performance could be improved by increasing the number of threads supported
in hardware. This could be done by adding more thread contexts to a core with
support for simultaneous multithreading and/or adding more cores. Contrast
these two different approaches and describe their limitations if we accept our
area budget (i.e. die size) is fixed. [6 marks]



CST2.2020.9.5

5 Computer Vision

(a)

() For an image I(x,y), define its gradient vector field \a (x,y). [1 mark]
(74) Why is this vector field a useful thing to compute? [1 mark]
(#ii) Define the gradient magnitude over the image plane (z,vy). [1 mark]
(iv) Define the gradient direction over the image plane (z,y). [1 mark]

(v) Explain how the gradient vector field is used in the Canny edge detector,
the main steps in its use, and its advantages. [3 marks]

A Bayesian classifier uses observations x
to assign visual objects to either one of
two classes, Cy or Cs. Their baseline
prior probabilities are p(C;) and p(Csy), with
sum p(Ch) + p(Cy) = 1. Observations x
have unconditional probability p(z), and
the class-conditional probabilities of a given
observation = are p(z|Cy) and p(x|Cy). R: R2

p(x|C1)p(Cy)

P(X|C2)p(C>)

() Using the above quantities provide an expression for p(Cy|x), the likelihood
of class C}, given an observation x. (Here k € {1,2}.) [2 marks]

11) Provide a decision rule using p(Cj;|z) and p(Cy|x) for assigning classes
j
{C;, Ck} based on observations z, that will minimise errors. [2 marks]

(711) Now express your decision rule instead using only the quantities p(C}),
p(Cx), p(z|C;), p(x|Cy), and relate it to the diagram above. [1 mark]

(iv) If the classifier decision rule assigns class Cy if x € Ry, and Cy if z € Ry
as shown in the figure, what is the total probability of error? [2 marks]

Propose an algorithm for shape classifica-
tion that could correctly classify all of the

e
objects shown here as cashew nuts, despite & i 8
& ' 4
#(

their variations in size (or hence distance),
. . . ) L
pose angles, colours, and intrinsic shapes. (
How can shape grammars, active contours, \_/'
boundary descriptors, zeroes of curvature, - ]

and codon constraints enable a classifier to 5}'
achieve those invariances?

3
[6 marks]
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6 Cryptography

(a) Consider a message-authentication code Mac expected to provide existential

unforgeability under adaptive chosen-message attack.

(i) What requirement does existential unforgeability impose on any padding
function applied to the message by Mac and why? [4 marks]

(74) What is an example of a padding function that satisfies that requirement?
[2 marks]

While reviewing the MacGyver burglar alarm system, you notice that a sensor
S uses the following stream authentication protocol to report its status to the
controller C' once every second over a data wire:

C - S: R with R €g {0,1}'%
S — C: (Ml,Tl) with T1 = tl’Uﬂng(MaCK(Ml, R))
S — C: (MQ,TQ) with Ty = trunc32(|\/|acK(M2,T1))

S — C: (M,T;) with T; = truncsa(Macg (M;, T; 1))

The controller C picks a new 128-bit random value R when the system is powered
up. Each message (M;,T;) is sent i seconds after that. The messages M; are
normally all identical, of the form M = 0 meaning “no burglary has happened in
the last second”. Mac is a 128-bit message-authentication code function, using
a private key K shared between S and C'. Because of the very limited data rate
available on the alarm-wire interface, the output of Mac is truncated to the first
32 bits.

(i) How can an attacker, who has been observing this communication since
power up, eventually predict future tags T; for the constant message
M; = M? [4 marks|

(ii) How long will it take, on average, after powerup until the attacker can start
sending simulated sensor messages? [4 marks]

(74i) What security implication does the predictability of message-authentication
codes from a sensor have for a burglar alarm system? [2 marks]

(iv) How can you improve the protocol to practically eliminate the risk of that
attack, without increasing the number of bits transmitted over the wire?

[4 marks|
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7 Denotational Semantics

(a) (7)

(i)

Define the notion of admissible subset of a domain and state Scott’s fixed
point induction principle. [4 marks]

Let (D,Cp) and (F,Cg) be domains and let f : D — E and g: E — D
be continuous functions.

Using Scott’s fixed point induction principle prove
(A) fix(fog) Cp f(fix(go f))
(B) f(fix(go f)) Ep fix(fog)
8 marks|

Define the contextual-equivalence relation P, = P, : 7 for pairs of closed
PCF expressions P;, P, and a PCF type 7. [2 marks]

Prove or disprove the following statement.

For every pair of PCF types 0,7 and every pair of closed PCF expressions
M of type 0 — 7 and N of type 7 — o,

fix(fny: 7. M(N(y))) Zex M (fix(fn z: 0. N(M(2)))) : 7

[6 marks|
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8 Hoare Logic and Model Checking

We consider the LTL temporal logic over atomic propositions p € AP:

¢ € PathProp i=p | =0 | g1 Ao | 01V a2 | o1 = 02 | X O |F |G | p1 U oo

Precisely state the semantics of the until operator ¢; U ¢s. [2 marks]
Express F ¢ in terms of the until operator — U =. [2 marks]

Give models My, M such that M; E G (p V ¢) and My = (G p) V (G q), but
either My # (G p) V (G ¢q) or Mo ¥ G (pV ¢) (indicate which). [3 marks]

Starting from any strictly positive integer n, the transition system induced by
going to n/2 if n is even, and to 3 x n + 1 if n is odd, is conjectured to always
pass through 1.

(i) Precisely describe this conjecture in the form of a model and an LTL
formula. [4 marks]

(i) Describe what shape a counterexample to this conjecture would have.
[2 marks]

Alice (a) and Bob (b) share a bicycle. To ensure they do not have problems,
they have a protocol: they can express an interest for it (e), use it (u), or not
need it (n), yielding atomic propositions AP = Pers x Act, where Pers :=a| b
and Act ::= e | u | n, so that for example a state labelled with {ae, bu} is one
where Alice has expressed interest in using the bike, and Bob has taken it.

Give LTL formulas for
(i) Alice does not keep the bike forever. [2 marks]

(7i) Non-starvation: if Alice expresses an interest in having the bike for long
enough, she eventually gets it. [2 marks]

(73i) Alice cannot take the bike twice in a row if Bob expresses interest
throughout. [3 marks]
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9 Information Theory

(a)

A machine learning system was trained to learn about random variable X using
a training set in which the probability distribution of its values {z;} was p(z),
having entropy H(p); but then a test data set had a different distribution ¢(x).

(i) Define the cross-entropy H(p, q) between distributions p(z) and ¢(x). What
condition minimises its value, and then what value is it? [3 marks]

(i) Define the Kullback-Leibler distance (or the relative entropy) Dy (p||q)
between the distributions p(x) and ¢(z). What condition minimises its

value, and then what value is it? [3 marks]
(7i) Show that: H(p,q) = Dkr(pl|lq) + H(p). [2 marks]
sin(mx)

The function sinc(x) = for x # 0 as plotted below plays an important

role in the Sampling Theorem. By considering its Fourier transform, show that
this function is unchanged in form after convolution with itself, and show that
it even remains unchanged in form after convolution with any higher frequency
sinc function, sinc(ax) for @ > 1; but that if 0 < a < 1, then the result of the
convolution is instead that lower frequency sinc function sinc(az). [4 marks]

Explain the use of run-length encoding in JPEG compression. How does it
enable compession factors of typically at least 10:1 with no perceptible loss, and
even compression factors of 30:1 or higher? What is the role of the quantisation
table in achieving this, and what is the relevant fact about spatial frequency
sensitivity in human visual perception? [3 marks]

(i) Define the genetic isopoint of a human population. (i) For most Europeans
today, in what century did it occur? (4ii) For a large well-mixed population of
size m, approximately how many generations N ago was the genetic isopoint?
(iv) Regarding genetic transmission as a lossy information channel, what
sampling fact becomes critical for the effect of an ancestor once a family tree
extends back at least N = 15 generations? (v) What does Information Theory
imply is achieved by sexual (as opposed to asexual) reproduction?  [5 marks]
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10 Machine Learning and Bayesian Inference

The central limit theorem tells us that, if X; are random variables, u is the mean of
X, and o? is the variance of X; then, under suitable conditions

~

Xn_,u
a/Vn

— N(0,1)

where N(0, 1) denotes the normal density with mean 0 and variance 1, and

. 1 &

Let Y have density N(0,1). We know that, for a parameter p, there is a constant
zp such that
Pr(—z, <Y <z,) >p.

Show that with probability at least p, the quantity u as defined above is in the
interval described by X, £ z,(0/y/n). [3 marks]

The quantity X, can be regarded as an estimate of u. If the random variables
X; take values in {0, 1}, and are also independent and identically distributed,
explain why it might make sense to estimate o? as

ot~ s=X,(1-X,).
[3 marks|

Define what it means for an estimate such as that suggested in Part (b) to be
unbiased. Is the estimate suggested in Part (b) unbiased? Provide a proof of
your answer. [7 marks|

We have two binary classifiers hy and hy, and a test set s containing 1000
examples. During testing, h; makes 105 errors and hy makes 120 errors. Explain
how we can estimate a confidence interval of the kind defined in Part (a) for
the difference (er(hy) — er(hs)) between the true error probabilities er(h;) and
er(hy) of the classifiers. Your answer should be careful to state any assumptions
or approximations being made. [7 marks]

10
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11 Mobile and Sensor Systems

A company manufactures small location tags containing a speaker and a Bluetooth
radio designed to be attached to personal effects such as keys. A Bluetooth-enabled
smartphone can instruct the device to make an audible noise to aid in finding it
when lost. The company wishes to support background location estimation of the
tags relative to the phone.

(a) They propose to use Bluetooth 5.1, which supports an antenna array for direction
finding from Bluetooth packet exchanges.

(2)

(i)

Explain how an antenna array enables direction finding. Discuss any
practical challenges in direction finding indoors. [4 marks]

State and justify the upper bound on the spacing between antenna array
elements and estimate this value in metres for Bluetooth. Comment on the
practicality of your estimate. Is there any disadvantage to having closer
spacing? [4 marks|

(74i) The antenna array could be on the phone or on the location tag or both.

Discuss the commercial trade-offs of these options. [3 marks]

In addition to direction, the system must estimate the distance to the tag from
the phone.

(4)

()

Discuss how feasible it is to use Received Signal Strength (RSS)
measurements to estimate distance in this context. [1 mark]

Explain how WiFi 802.11mc Fine Timing Meansurement estimates dis-
tance. Discuss whether an analogous scheme could be implemented using
standard Bluetooth 5.1 hardware for this application. [5> marks]

(7ii) Given that the speakers and microphones on smartphones and on the

tags can produce and receive ultrasonic audio, describe an approach
to estimating distance. How would you optimise your system for the
power-sensitive location tags? [3 marks]

11 (TURN OVER)
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12 Optimising Compilers

The following code for a function is given to a compiler for optimisation, where
arguments are passed in through variables arg0, argl and arg2 and the result is
returned through variable res0. Describe five optimisations that the compiler can
carry out, explaining for each the analysis required, the actual transformation, how
it impacts the code and showing the resulting code after all optimisations have been

performed.

1: entry foo

2 mov t0, #0x1000 // t0 = 0x1000

3 mov t1, #0 // t1 =0

4: mov t2, #0 // t2 =0

5: mul t3, arg0, #2 // t3 = arg0 * 2

6: mul t4, argl, #4 // t4d = argl x 4

7 mov t5, #&labd // t5 = address of lab4

8 sti t0, t5 // *t0 = t5

9: b lab7 // branch to lab7

10: labl: mov t6, #1 // t6 =1

11: cmpeq tl, arg2, lab3 // branch to lab3 if t1 == arg?2
12: mul t7, t4, t4 // t7T = t4d * t4

13: cmpeq tl, t7, labb // branch to labb5 if t1 == t7
14: b lab6 // branch to lab6

15: lab2: mov t8, #&labb // t8 = address of labb

16: sti t0, t8 // *t0 = t8

17: b labb // branch to labb

18: lab3: mul t9, t4, t4 // t9 = td x t4

19: add t2, t2, t9 // t2 = t2 + t9
20: add t6, t6, #1 // t6 = t6 + 1
21: 1di t10, tO // t10 = *t0
22: bi t10 // branch to address in t10
23: lab4: add t2, t2, tl // t2 = t2 + t1
24 b lab6 // branch to lab6
25: lab5: add t2, t2, t6 // t2 = t2 + t6
26: lab6: add ti1, t1, #1 // t1 =t1 + 1
27: lab7: cmpne tl, t3, labl // branch to labl if t1 != t3
28: mul resO, t2, #4 // resO = t2 x 4
29: mov tl11l, #&labl // tl1l = address of labl
30: sti t0, ti1 // *t0 = t11
31: exit

[4 marks each]

12



CST2.2020.9.13

13 Principles of Communications

(a) In general, weighted fair queueing can be used to provide resource guarantees

(b)

to packet flows in networks. Explain the problem with using a simple priority
queue to do the same. Define weighted fair queueing. [5> marks]

The Data Centre environment often allows us to make some simplifying
assumptions about traffic that mean we can employ a priority queueing system
in switches, combined with some traffic regulation in end systems. QJump is one
approach to this - describe the assumptions that allow this, and the mechanisms
QJump uses to offer delay bounding for high priority traffic without resource
starvation for bulk traffic flows. [15 marks]

13 (TURN OVER)
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14 Quantum Computing

, |0y H . L

First inverse

register | |0y H I QFT L™
Second ) U v?
register

[¥1)
Show that U = L L2 is unitar [1 mark]
T V5|2 -1 v

Show that F +2\/ﬂ and F _2\/1 are (un-normalised) eigenvectors of U, and

give the eigenvalues. [2 marks]

The figure shows the quantum circuit for quantum phase estimation to two bits
of precision for a single-qubit unitary. Quantum phase estimation is performed

1 2 1
. o . . _ L _
to two bits of precision with U = 7 [2 _J and |u) = {0} , find the quantum
state, |11), before the inverse quantum Fourier transform is executed.
[7 marks|

What possible measurement outcomes can occur (i.e., after the inverse quantum
Fourier transform, with measurement in the computational basis)?  Give
probabilities for each possible outcome. [6 marks|

Give two applications of quantum phase estimation, and for each give the state,

|u), in which the second register should be prepared, and briefly outline how
these can be prepared in practise. [4 marks]

14
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15 Types

(a) Consider System F extended with existential types, products, and a natural

number type.

(i) Give an existential type corresponding to an abstract type of booleans with
constructors for true and false, as well as a conditional test (if-then-else)
operation. [3 marks|

(7i) Give an implementation of this type, using the natural numbers as the
representation of booleans. [4 marks]

Suppose we extend the simply-typed lambda calculus with the ability to raise
exceptions with the fail construct, and the ability to catch exceptions with the
try eg except e; construct. Suppose also that we track exceptions monadically,
with the type Exn A representing possibly-failing computations of A.

(i) Give a typing rule for signalling an error with fail. [2 marks]

(ii) Give a typing rule for trapping an error with try egexcepte;. Does your
type for this term have an effect? Justify your design. [5 marks]

Consider the simply-typed lambda calculus extended with natural numbers and
reference types, but without monadic effect tracking.

(i) Give an expression of type 1 — N, which evaluates to a function which
counts the number of times it has been called. [2 marks]

(71) Without using explicit recursion, give an expression and its type in the
simply-typed lambda calculus with references whose execution never halts.
[4 marks]

END OF PAPER
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