COMPUTER SCIENCE TRIPOS Part II – 2019 – Paper 9

9 Information Theory (jgd1000)

- (a) If I pick a number n that can be any integer from 1 to ∞ whose probability distribution of being selected is $(\frac{1}{2})^n$, and you ask a series of 'yes/no' questions which I will answer truthfully, how many such 'yes/no' questions should you expect to ask before discovering which number I have picked? Justify your answer by invoking a known series limit. What sequence of questions would be the most efficient to ask, and why? [4 marks]
- (b) An inner product space containing complex functions f(x) and g(x) is spanned by a set of orthonormal basis functions $\{e_i\}$. Complex coefficients $\{\alpha_i\}$ and $\{\beta_i\}$ therefore exist such that $f(x) = \sum_i \alpha_i e_i(x)$ and $g(x) = \sum_i \beta_i e_i(x)$.

Show that the inner product $\langle f, g \rangle = \sum_{i} \alpha_i \overline{\beta_i}$.

(c) Consider a data sequence f[n] (n = 0, 1, ..., 15)having Fourier coefficients F[k] (k = 0, 1, ..., 15). Using the 16th roots of unity labelled around the unit circle as powers of w¹, the primitive 16th root of unity, construct a sequence of the wⁱ that could $\overline{w^8}$ be used to compute F[3] when an inner product is computed between your sequence of wⁱ and the data sequence f[n].

(d) Explain how vector quantisation exploits sparseness to construct very efficient codes. Use the example of encoding a natural language lexicon with a 15 bit coding budget. Contrast the strategy of using codewords for single letters versus using codewords as pointers to a sparse index of combinations of letters.

[4 marks]

[4 marks]

(e) A continuous signal f(t) has Fourier transform $F(\omega)$. Explain why computing derivatives of f(t) such as f'(t) or f''(t) amounts simply to high-pass filtering. For the n^{th} derivative $f^{(n)}(t)$, what exactly is this filtering operation when expressed in terms of $F(\omega)$? Show how this operation could be used to define derivatives of non-integer order (for example the 1.5th derivative). [4 marks]