7 Hoare Logic and Model Checking (jp622)

Consider a programming language that consists of commands \(C \) composed from assignments \(X := E \) (where \(X \) is a program variable, and \(E \) is an arithmetic expression), heap allocation \(X := \text{alloc}(E_1, \ldots, E_n) \), heap assignment \([E_1] := E_2 \), heap dereference \(X := [E] \), disposal of heap locations \(\text{dispose}(E) \), the no-op \(\text{skip} \), sequencing \(C_1; C_2 \), conditionals \(\text{if } B \text{ then } C_1 \text{ else } C_2 \) (where \(B \) is a boolean expression), and loops \(\text{while } B \text{ do } C \).

(a) Explain informally what it means for a separation logic partial correctness triple \(\{P\} \ C \ \{Q\} \) to be valid. [3 marks]

(b) Explain informally what it means in terms of the executions of \(C \) for the separation logic partial correctness triple \(\{\top\} \ C \ \{\bot\} \) to be valid. [2 marks]

(c) Recall the list representation predicate \(\text{list} \):

\[
\text{list}(t, []) = (t = \text{null}) \quad \text{list}(t, h :: \alpha) = \exists y. ((t \mapsto h) \ast ((t + 1) \mapsto y) \ast \text{list}(y, \alpha))
\]

We write \([\text{null}]\) for the empty mathematical list; \(h :: \alpha \) for the mathematical list the head of which is \(h \), and the tail of which is \(\alpha \); \(\alpha + + \beta \) for the concatenation of mathematical lists \(\alpha \) and \(\beta \); \(\alpha[i] \) for the \(i \)-th element of the list \(\alpha \), starting at 0; and \([k, \ldots, n]\) for the ascending list of integers from \(k \) to \(n \), including \(k \) and \(n \).

Give a proof outline, including a loop invariant, for the following triple:

\[
\{N = n \land N \geq 0\} \quad X := \text{null}; \text{while } N > 0 \text{ do } (X := \text{alloc}(N, X); N := N - 1) \quad \{\text{list}(X, [1 \ldots n])\}
\] [4 marks]

(d) Also recall the partial list representation predicate \(\text{plist} \):

\[
\text{plist}(t, [], u) = (t = u) \quad \text{plist}(t, h :: \alpha, u) = \exists y. ((t \mapsto h) \ast ((t + 1) \mapsto y) \ast \text{plist}(y, \alpha, u))
\]

Give a loop invariant for the following list sum triple:

\[
\{\text{list}(X, \alpha)\} \quad Y := X; N := 0; \text{while } Y \neq \text{null} \text{ do } (M := [Y]; N := N + M; Y := [Y + 1]) \quad \{\text{list}(X, \alpha) \land N = \sum_{i=0}^{\text{length}(\alpha) - 1} \alpha[i]\}
\] [4 marks]

(e) Give a loop invariant for the following list concatenation triple:

\[
\{\text{list}(X, \alpha) \ast \text{list}(Y, \beta)\} \quad \text{if } X = \text{null} \text{ then } Z := Y \text{ else } \\
\left(\begin{array}{l}
Z := X; U := Z; V := [Z + 1]; \\
\text{while } V \neq \text{null} \text{ do } (U := V; V := [V + 1]); \\
[U + 1] := Y \\
\{\text{list}(Z, \alpha + + \beta)\}
\end{array}\right)
\] [5 marks]

(f) Describe precisely a stack and a heap that satisfy \(\text{list}(X, [1, \ldots, 3]) \). [2 marks]