7 Hoare Logic and Model Checking (jp622)

Consider a programming language that consists of commands C composed from assignments $X := E$ (where X is a program variable, and E is an arithmetic expression), heap allocation $X := \text{alloc}(E_1, \ldots, E_n)$, heap assignment $[E_1] := E_2$, heap dereference $X := [E]$, disposal of heap locations $\text{dispose}(E)$, the no-op skip, sequencing $C_1 ; C_2$, conditionals $\text{if } B \text{ then } C_1 \text{ else } C_2$ (where B is a boolean expression), and loops $\text{while } B \text{ do } C$. null is 0

(a) Explain informally what it means for a separation logic partial correctness triple $\{P\} C \{Q\}$ to be valid. [3 marks]

(b) Explain informally what it means in terms of the executions of C for the separation logic partial correctness triple $\{\top\} C \{\bot\}$ to be valid. [2 marks]

(c) Recall the list representation predicate list:

$$\text{list}(t, []) = (t = \text{null}) \quad \text{list}(t, h :: \alpha) = \exists y. ((t \mapsto h) * ((t + 1) \mapsto y) * \text{list}(y, \alpha))$$

We write $[]$ for the empty mathematical list; $h :: \alpha$ for the mathematical list the head of which is h, and the tail of which is α; $\alpha \langle+\rangle \beta$ for the concatenation of mathematical lists α and β; $\alpha[i]$ for the i-th element of the list α, starting at 0; and $[k, \ldots, n]$ for the ascending list of integers from k to n, including k and n. Give a proof outline, including a loop invariant, for the following triple:

$$\{N = n \land N \geq 0\} \\
X := \text{null}; \text{while } N > 0 \text{ do } (X := \text{alloc}(N, X); N := N - 1) \\\\{\text{list}(X, [1, \ldots, n])\}$$

[4 marks]

(d) Also recall the partial list representation predicate plist:

$$\text{plist}(t, [], u) = (t = u) \\
\text{plist}(t, h :: \alpha, u) = \exists y. ((t \mapsto h) * ((t + 1) \mapsto y) * \text{plist}(y, \alpha, u))$$

Give a loop invariant for the following list sum triple:

$$\{\text{list}(X, \alpha)\} \\
Y := X; N := 0; \text{while } Y \neq \text{null} \text{ do } (M := [Y]; N := N + M; Y := [Y + 1]) \\
\{\text{list}(X, \alpha) \land N = \sum_{i=0}^{\text{length}(\alpha)-1} \alpha[i]\}$$

[4 marks]

(e) Give a loop invariant for the following list concatenation triple:

$$\{\text{list}(X, \alpha) \ast \text{list}(Y, \beta)\} \\
\text{if } X = \text{null} \text{ then } Z := Y \text{ else } \\
\left(Z := X; U := Z; V := [Z + 1]; \\
\text{while } V \neq \text{null} \text{ do } (U := V; V := [V + 1]); \\
[U + 1] := Y \right) \\
\{\text{list}(Z, \alpha \langle+\rangle \beta)\}$$

[5 marks]

(f) Describe precisely a stack and a heap that satisfy $\text{list}(X, [1, \ldots, 3])$. [2 marks]