6 Computation Theory (amp12)

(a) (i) Give an inductive definition of the relation $M =_\beta N$ of β-conversion between λ-terms M and N. [3 marks]

(ii) What is meant by a term in β-normal form? [1 mark]

(iii) If M and N are in β-normal form, explain why $M =_\beta N$ implies that M and N are α-equivalent λ-terms. [2 marks]

(You need not define notions such as α-equivalence and capture-avoiding substitution.)

(b) Show that there are λ-terms True, False and If satisfying $\text{If } \text{True} \ N =_\beta M$ and $\text{If } \text{False} \ N =_\beta N$ for all λ-terms M and N and with $\text{True} \neq _\beta \text{False}$. [4 marks]

(c) Define Curry’s fixed point combinator Y and prove its fixed point property. [3 marks]

(d) Consider the following two properties of a λ-term M:

(I) there exist λ-terms A and B with $M A =_\beta \text{True}$ and $M B =_\beta \text{False}$

(II) for all λ-terms N, either $M N =_\beta \text{True}$ or $M N =_\beta \text{False}$.

Prove that M cannot have both properties (I) and (II). [Hint: if M has property (I), consider $M (Y(\lambda x. \text{If } (M x) B A))$.] [4 marks]

(e) Deduce that there is no λ-term E such that for all λ-terms M and N

$$E M N =_\beta \begin{cases} \text{True} & \text{if } M =_\beta N \\ \text{False} & \text{otherwise} \end{cases}$$

[3 marks]