5 Computation Theory (amp12)

For each \(e \in \mathbb{N} \), let \(\varphi_e \) denote the partial function \(\mathbb{N} \rightarrow \mathbb{N} \) computed by the register machine with index \(e \).

(a) What is meant by a universal register machine for computing partial functions \(\mathbb{N}^k \rightarrow \mathbb{N} \) of any number of arguments \(k \). [3 marks]

(b) How would you modify the machine from Part (a) to compute the partial function \(u : \mathbb{N}^2 \rightarrow \mathbb{N} \) satisfying \(u(e, x) \equiv \varphi_e(x) \) for all \(e, x \in \mathbb{N} \)? [2 marks]

(c) Given a register machine computable partial function \(g : \mathbb{N}^2 \rightarrow \mathbb{N} \), show that there is a total function \(\bar{g} : \mathbb{N} \rightarrow \mathbb{N} \) which is register machine computable and which satisfies \(u(\bar{g}(x), y) \equiv g(x, y) \) for all \(x, y \in \mathbb{N} \). [7 marks]

(d) Suppose \(h : \mathbb{N} \rightarrow \mathbb{N} \) is a total function which is register machine computable. Show that there exists a number \(n \in \mathbb{N} \) such that \(\varphi_n \) and \(\varphi_{h(n)} \) are equal partial functions.

[Hint: let \(g \) be the computable partial function defined by \(g(x, y) \equiv u(h(u(x, x)), y) \) and consider \(\bar{g}(e) \) where \(\bar{g} \) is the function obtained from \(g \) as in Part (c) and \(e \) is the index of some register machine that computes it.] [8 marks]