A Boolean formula \(\phi \) is said to be *satisfiable* if there is an assignment \(\sigma : V \rightarrow \{\text{true}, \text{false}\} \) of values to the variables of \(\phi \) that makes it true.

A *quantified Boolean formula* \(\theta \) is an expression that is (i) either a Boolean formula; or (ii) \(\exists X \phi \) where \(\phi \) is a quantified Boolean formula and \(X \) is variable; or (iii) \(\forall X \phi \) where \(\phi \) is a quantified Boolean formula and \(X \) is variable.

We say that a quantified Boolean formula \(\theta \) is satisfied by an assignment \(\sigma : V \rightarrow \{\text{true}, \text{false}\} \) if either

- \(\theta \) is a Boolean formula that is made true by \(\sigma \); or
- \(\theta \) is \(\exists X \phi \) and either \(\sigma[X/\text{true}] \) or \(\sigma[X/\text{false}] \) make \(\phi \) true; or
- \(\theta \) is \(\forall X \phi \) and both \(\sigma[X/\text{true}] \) and \(\sigma[X/\text{false}] \) make \(\phi \) true.

Here, \(\sigma[X/v] \) denotes the assignment that is the same as \(\sigma \) for all variables apart from \(X \), and it maps \(X \) to the truth value \(v \).

We write QBF for the decision problem of determining whether a given quantified Boolean formula is satisfiable. In answering the questions below, you may assume the NP-completeness of any standard problem, as long as you state your assumptions clearly.

(a) Show that QBF is NP-hard. [4 marks]
(b) Show that QBF is co-NP-hard. [6 marks]
(c) Show that QBF is in PSPACE. [6 marks]
(d) Is QBF NP-complete? Why or why not? [4 marks]