7 Discrete Mathematics (gw104)

(a) Let \(n \) be a positive natural number. Show \(x \equiv y \mod n \) determines an equivalence relation between integers \(x \) and \(y \). \[3\text{ marks}\]

(b) Describe the extended Euclid algorithm which given a pair of positive natural numbers \((m, n) \) returns not only their gcd, \(\gcd(m, n) \), but also its expression as a linear combination, \(j.m + k.n \), for integers \(j \) and \(k \). \[7\text{ marks}\]

(c) Assume positive natural numbers \(m \) and \(n \) are coprime, so \(\gcd(m, n) = 1 \) with associated linear combination \(j.m + k.n = 1 \), for integers \(j \) and \(k \).

(i) Show that for any natural numbers \(r \) and \(s \) there is a solution to
\[
x \equiv r \mod m \land x \equiv s \mod n.
\]

[Hint: Take \(x = s.j.m + r.k.n \).] \[4\text{ marks}\]

(ii) Show the solution is unique mod \(m.n \), i.e. \(x \equiv y \mod m.n \) for any two solutions \(x \) and \(y \). \[6\text{ marks}\]