Consider formal languages \(L(x) \) over the alphabet \(\Sigma = \{0, 1\} \).

(a) \(L(a) \subset \Sigma^* \) consists of all and only the strings with an even number of 0s.

(i) Build a regular expression for \(L(a) \). [2 marks]

(ii) Draw the transition graph of a deterministic finite automaton (DFA) for \(L(a) \). [2 marks]

(b) \(L(b) \subset \Sigma^* \) is defined by the following axiom and rules:

\[
\begin{array}{c|cc}
& 0 & u & w10u \\
0 & 001u & wu & w
\end{array}
\]

where \(u \) and \(w \) are string variables in \(\Sigma^* \) while 0 and 1 are literals.

(i) State a property \(P_1 \) enjoyed by all strings in \(L(b) \) but by none of the following strings: 01011, 1, 111, 1111110001100, 10101. [2 marks]

(ii) Prove that all strings in \(L(b) \) enjoy the property \(P_1 \) you defined in your answer to Part (b)(i). [3 marks]

(iii) Either prove the following statement or provide a counterexample: “There is no string in \(L(b) \) with two consecutive 1s”. [4 marks]

(c) Language \(L(c) \subset \Sigma^* \) consists of the strings that enjoy the following four properties simultaneously:

- \(P_2 \) : “having a number of 0s divisible by three”;
- \(P_3 \) : “including the 11011 substring”;
- \(P_4 \) : “having at least four 0s”;
- \(P_5 \) : “having no more than five 1s”.

(i) Give three minimum-length strings in \(L(c) \). [1 mark]

(ii) For each of the properties \(P_2 \sim P_5 \), draw the transition diagram for a matching DFA. [4 marks]

(iii) Describe how to build a DFA for \(L(c) \) by combining the ones you built for Part (c)(ii). [2 marks]