1 Foundations of Computer Science (am21)

Three alternative representations for non-negative integers, \(n \), are:

- **Peano**: values have the form \(S(... S(Z)...) \), applying \(S \) \(n \) times to \(Z \) where \(S \) and \(Z \) are constructors or constants of some data type.

- **Binary**: values are of type \(\text{bool list} \) with 0 being represented as the empty list, and the least-significant bit being stored in the head of the list.

- **Church**: values have the form \(\text{fn f => fn x => f(... f(x) ...)} \), applying \(f \) \(n \) times to \(x \)

(a) Write ML functions for each of these data types which take the representation of an integer \(n \) as argument and return \(n \) as an ML \texttt{int}. [6 marks]

(b) Write ML functions for each of these data types which take representations of integers \(m \) and \(n \) and return the representation of \(m + n \). Your answers must not use any value or operation on type \texttt{int} or \texttt{real}. [Hint: you might it useful to write a function \texttt{majority: bool*bool*bool -> bool} (which returns true when two or more of its arguments are true) and to note that the ML inequality operator ‘\(<\)’ acts as exclusive-or on \texttt{bool}.] [10 marks]

(c) Letting \texttt{two} and \texttt{three} respectively be the Church representations of integers 2 and 3, indicate whether each of the following ML expressions give a Church representation of some integer and, if so what integer is represented, and if not giving a one-line reason.

\begin{itemize}
 \item[(i)] \texttt{two \ three}
 \item[(ii)] \texttt{three \ two}
 \item[(iii)] \texttt{two \circ \ three}
 \item[(iv)] \texttt{three \circ \ two}
\end{itemize} [4 marks]