COMPUTER SCIENCE TRIPOS Part IA - 2019 - Paper 1

1 Foundations of Computer Science (am21)

Three alternative representations for non-negative integers, n, are:

- Peano: values have the form $\mathrm{S}(\ldots \mathrm{S}(\mathrm{Z}) \ldots$. . . , applying $\mathrm{S} n$ times to Z where S and Z are constructors or constants of some data type.
- Binary: values are of type bool list with 0 being represented as the empty list, and the least-significant bit being stored in the head of the list.
- Church: values have the form $f n \mathrm{f} \Rightarrow \mathrm{fn} \mathrm{x}$ => $\mathrm{f}(\ldots \mathrm{f}(\mathrm{x}) \ldots$, applying f n times to \mathbf{x}
(a) Write ML functions for each of these data types which take the representation of an integer n as argument and return n as an ML int.
(b) Write ML functions for each of these data types which take representations of integers m and n and return the representation of $m+n$. Your answers must not use any value or operation on type int or real. [Hint: you might it useful to write a function majority: bool*bool*bool -> bool (which returns true when two or more of its arguments are true) and to note that the ML inequality operator '<>' acts as exclusive-or on bool.]
[10 marks]
(c) Letting two and three respectively be the Church representations of integers 2 and 3, indicate whether each of the following ML expressions give a Church representation of some integer and, if so what integer is represented, and if not giving a one-line reason.
(i) two three
(ii) three two
(iii) two o three
(iv) three o two

