
CST1.2019.4.1

COMPUTER SCIENCE TRIPOS Part IB

Monday 3 June 2019 1.30 to 4.30

COMPUTER SCIENCE Paper 4

Answer five questions: up to four questions from Section A, and at least one
question from Section B.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags

SPECIAL REQUIREMENTS
Approved calculator permitted

CST1.2019.4.2

SECTION A

1 Programming in C

Consider the following structure declaration for a general directed graph data
structure. In this structure, the size field gives the number of outgoing edges, and
the children field is a pointer to an array of pointers to the child nodes.

typedef struct node Node;

struct node {

bool flag;

int size;

Node **children; // pointer to an array of Node pointers

};

(a) Define a function Node *node(int n, Node **children) which builds a new
node from its arguments, taking ownership of the children argument and
initializing the flag field to false. [2 marks]

(b) Write a function Node *example(void) which returns a new graph with the
following structure, with the return value corresponding to n1: [2 marks]

n1 n2

(c) Define a structure for representing a linked list of Node * pointers, with a
Nodelist typedef for the structure. [2 marks]

(d) Supposing we represent the empty linked list with the NULL pointer, and a
cons cell with a pointer to a Nodelist, define a function Nodelist *cons(Node

*head, Nodelist *tail) to add an element to this linked list. [2 marks]

(e) Write a function Nodelist *reachable(Node *node) which returns a list of
all the nodes reachable from the argument node, including node itself. This list
should contain every reachable node, and have no duplicates. You may assume
that the flag field of every reachable node is set to false on entry to this
function, and that your routine may modify it as you wish. [7 marks]

(f) Define a function void free node(Node *node) which deallocates all the node
objects reachable from the argument node. You may assume that the flag field
of every reachable node is set to false on entry to this function, and that your
routine may modify it as you wish. [5 marks]

2

CST1.2019.4.3

2 Programming in C and C++

(a) Find at least 2 sources of undefined behaviour in the following program, and
write a corrected version of this function. [5 marks]

int main(void) {

char *s = "abcde"; int len = strlen(s);

for (int i = 0; i <= len; i++)

s[i] += 1;

return printf("'%s' is %d characters long\n", ++s, strlen(s));

}

(b) Restructure the program below to be more cache-efficient, giving the code and
explaining your changes. [5 marks]

typedef struct point { double x, y, z; } Point;

int find_max_x_argument(int n, Point *elems) {

double max = 0; int max_index = 0;

for (int i = 0; i < n; i++)

if (max < elems[i].x) { max_index = i; max = elems[i].x; }

return max_index;

}

(c) The following definition forms part of a legal C++ program:

int foo() {

MyClass x(1,2);

MyClass y = C(3,4);

MyClass z = x;

MyClass t;

z = x;

z.f = x.f;

return z.f;

}

(i) Give a declaration of MyClass which enables foo to compile and run, noting
any methods or constructors in MyClass which are invoked when foo is
called. [Note: Precise C++ syntax is not necessary to obtain full marks.]

[4 marks]

(ii) Having seen your declaration of MyClass, a colleague points out some of
the lines of foo may be redundant. Which are these? [2 marks]

(iii) Your boss now replaces your declaration of MyClass. Not having access to
the new declaration, explain, giving reasons, which if any lines of foo are
now redundant. [4 marks]

3 (TURN OVER)

CST1.2019.4.4

3 Compiler Construction

We will extend our language SLANG and the JARGON virtual machine with data
type definitions such as

type int_list = Nil | Cons of int * int_list

type int_tree = Leaf of int | Node of int * int_tree * int_tree

(Note that we will not consider polymorphic types.)

We also extend the language with a match expression and pattern matching so that
we can write functions such as

let tail (l : int_list) : int_list =

match l with

| Cons(x, l') -> l'

end

end

let is_nil (l : int_list) : bool =

match l with

| Nil -> true

| l' -> false

end

end

let sum (x : int_tree) : int =

match x with

| Leaf y -> y

| Node(y, t1, t2) -> y + (sum t1) + (sum t2)

end

end

The semantics of the match expression: Match clauses are attempted from first to
last. If no match is found then there is a run-time error and the program halts (we
don’t have exceptions).

(a) Ignoring lexing and parsing, what changes to the compiler’s front-end would this
require? [3 marks]

(b) Discuss possible runtime representations of values of types such as int_list

and int_tree. [3 marks]

[continued . . .]

4

CST1.2019.4.5

(c) Assuming your runtime representation uses tags, do you need distinct tags for
Cons(x, l) and Node(x, t1, t2)? Justify your answer. [4 marks]

(d) Suppose that our language allows nested patterns such as

match t with

| Node(x, Leaf y, t2) -> e1(x, y, t2)

| Node(x, t1, Leaf y) -> e2(x, t1, y)

| Node(x, Node(y, t1 t2), t3) -> e3(x, y, t1, t2, t3)

end

but our front-end generates abstract syntax that cannot contain nested patterns.
How would you represent the code above in the same language without nested
patterns? [4 marks]

(e) Carefully describe the code you would generate for the JARGON virtual machine
for the body of the function sum defined above. If you need to extend the virtual
machine with new instructions, then define their semantics. (You do not need to
remember the exact syntax of the JARGON instructions as long as you clearly
explain what your code is doing.) [6 marks]

5 (TURN OVER)

CST1.2019.4.6

4 Compiler Construction

This question explores how exceptions might be added to SLANG and the JARGON
virtual machine. We will raise an exception with

raise e

where e is an expression. We will “trap” an exception with the following
expression.

try e with f end

If e evaluates to a value v, then v is the result of the try-expression. Otherwise, the
evaluation of e raises an exception E and the try-expression continues by evaluating
the function application f(E). To simplify things we will assume that each f is an
identifier. Uncaught exceptions at the top-level will result in a runtime error.

(a) Do we need to define a fixed type for exceptions? Justify your answer.
[3 marks]

(b) What typing rule or rules would you implement for the expression raise e?
Justify your answer. [3 marks]

(c) A compiler may rewrite expressions in order to optimise generated programs.
For example, here are two rewrite rules to simplify conditional expressions:

code replacement
1 if true then e1 else e2 e1

2 if false then e1 else e2 e2

For each of the rules below, argue that it is, or is not, a valid optimisation rule.

code replacement
1 raise (raise e) raise e

2 e1 + (raise e2) raise e2

3 try (raise e) with f end f(e)

4 try e with (fun x -> raise x) end e

[6 marks]

(d) Carefully describe the stack-oriented code you would generate for both the
raise- and try-expressions. [8 marks]

6

CST1.2019.4.7

5 Further Java

A programmer designs a client-server booking system for a meeting room. The role
of the server is to distribute bookings between clients when they connect. Clients
open a socket connection to the server regularly for a short period. When a client
connects, the client first sends to the server an instance of Message which contains
any new bookings made by the client; in response, the server sends an instance of
Message containing all bookings made by other clients since the client last connected;
the server then closes the connection. The key parts of the Message and Booking

classes are defined as follows:

public class Message implements Serializable {

private final String uniqueClientId;

private final java.util.List<Booking> bookings;

...

}

public class Booking implements Serializable {

private final String uniqueClientId;

private final java.util.Date startTime;

private final java.util.Date endTime;

private final String description;

...

}

(a) Write a Java implementation of the server, using a single thread to serve
each client in turn. You may assume the existence of a static method
processBookings, which accepts a list of new bookings from a specified client
and returns a list of bookings to be sent back to the client. You may assume
suitable accessor methods for Message and Booking; you do not need to handle
exceptions. [8 marks]

(b) The programmer decides to extend the booking system with vector clocks.

(i) Write down a suitable data structure for a vector clock in Java. [2 marks]

(ii) Describe in words how the system can be modified to incorporate vector
clocks and allow clients to compute a partial order of Message objects.
Discuss how vector clocks are initialised and updated. [6 marks]

(iii) The programmer wants to use vector clocks to determine which booking
occurred first, allowing clients to mark any subsequent bookings as in
conflict and therefore cancelled. Describe when the vector clock algorithm
cannot determine which booking is first, how this is detected, and propose
a solution which resolves the ambiguity. [4 marks]

7 (TURN OVER)

CST1.2019.4.8

6 Security

(a) What is the purpose of the HttpOnly flag in the HTTP protocol? Briefly describe
an attack that this flag was intended to prevent. [4 marks]

(b) Users of web sites often commit transactions by filling out an HTML form
and pressing a “Submit” button to update some state stored on a server (e.g.,
password change, purchase).

(i) HTML forms can submit such requests using either the GET or POST method
of HTTP. Which is more appropriate here? Give three reasons. [6 marks]

(ii) Some web servers place an additional token value into an invisible field of
HTML forms that are used to commit security-critical transactions. What
security risk can such a token mitigate? [4 marks]

(iii) Explain three additional checks that a web server may implement to reduce
this risk? [6 marks]

8

CST1.2019.4.9

7 Security

(a) In a Linux shell session, you can see the following information:

$ ls -la

drwxr-xr-x 2 root root 4096 Jun 3 13:29 .

drwxr-xr-x 25 root root 4096 Jun 3 13:29 ..

-rwxr-xr-x 1 root root 4675 Jun 3 13:29 script.pl

Consider how you need to change the file access-control information shown above
in order to achieve the following additional goals:

• Only members of the group staff who are not also members of the group
interns can execute script.pl.

• When script.pl is called, it should be able to switch between using the
access privileges of the caller and those of the user primary.

• All members of group staff should be able to read the contents of
script.pl.

What would “ls -la” output after you have applied these changes? [6 marks]

(b) Sending a password over a network connection is vulnerable to replay attacks
by eavesdroppers. Briefly describe three other forms of unilateral (or one-pass)
authentication suitable for human keyboard entry that reduce that risk with the
help of a hardware token, and name one advantage of each. [6 marks]

(c) The Windows NT operating-system family offers two variants of many API
functions that receive a string: one for strings using ASCII (or one of its 8-bit
“code page” extensions) and one for 16-bit Unicode strings. Linux and many
Internet protocols instead use an ASCII-compatible encoding of Unicode called
UTF-8.

(i) Briefly explain how UTF-8 is decoded. [4 marks]

(ii) What particular security risk can emerge when UTF-8 is used in a system
along with another Unicode encoding, such as the 16-bit wide characters
on Windows, and how can this be avoided? [4 marks]

9 (TURN OVER)

CST1.2019.4.10

SECTION B

8 Semantics of Programming Languages

Consider the following C-like language, tinyC. It has locally-scoped mutable variables,
and functions that take a single argument. Its operational semantics is defined
as a transition system over configurations 〈e,E , s〉 where E is an environment
{x1 7→ n1, .. , xj 7→ nj}, mapping the variable names currently in scope to their
addresses, and s is a store {n1 7→ v1, .. , nk 7→ vk}, mapping each currently allocated
address to either an integer n or undef . In this question n ranges over 0 . . . 263−1.
Programs p consist of finite sets of definitions with distinct names.

expression, e ::= n | x | x=e ′ | { int x ; e} | e1; e2 | f (e) | undef | kill x

definition, d ::= int f (int x){e}

E (x)=n s(n)=n ′

〈x ,E , s〉 −→ 〈n ′,E , s〉
deref

E (x)=n n ∈ dom (s)

〈kill x ,E , s〉 −→ 〈0,E\x , s\n〉
kill

〈e,E , s〉 −→ 〈e ′,E ′, s ′〉
〈x=e,E , s〉 −→ 〈x=e ′,E ′, s ′〉

as1
E (x)=n s(n)=v

〈x=n ′,E , s〉 −→ 〈n ′,E , s + [n 7→ n ′]〉
as2

x 6∈ dom (E) n 6∈ dom (s) ¬∃n′ < n. n′ 6∈ dom(s)

〈{ int x ; e},E , s〉 −→ 〈e;kill x ,E + [x 7→ n], s + [n 7→ undef]〉
local

〈e1,E , s〉 −→ 〈e ′1,E ′, s ′〉
〈e1; e2,E , s〉 −→ 〈e ′1; e2,E ′, s ′〉

seq1
〈n; e,E , s〉 −→ 〈e,E , s〉

seq2

〈e,E , s〉 −→ 〈e ′,E ′, s ′〉
〈f (e),E , s〉 −→ 〈f (e ′),E ′, s ′〉

cl1
int f (int x){e} ∈ p

〈f (n),E , s〉 −→ 〈{ int x ; (x=n; e)},E , s〉
cl2

(a) For the configuration 〈g(3), { }, { }〉 and program int g(int y){{ int z; z=y}},
give the sequence of 11 configurations it transitions to. For each transition,
include the list of rule names involved in its derivation, but not the derivation
itself. [9 marks]

(b) For each of the following, briefly explain the key points of its tinyC semantics and
what it illustrates, referring to the transitions and rules, and to the relationship
between tinyC and the full C language, as appropriate.

(i) 〈{ int y; g(y)}, { }, { }〉. [3 marks]

(ii) 〈{ int y; 4}; y, { }, { }〉 [3 marks]

(iii) 〈h(5), { }, { }〉, with the program int h(int y){y=6; y}, [3 marks]

(iv) 〈{ int y; (y=3; { int y; y=4}); y}, { }, { }〉. [2 marks]

10

CST1.2019.4.11

9 Semantics of Programming Languages

Consider the following pure functional language, in which n ranges over the
mathematical integers.

T ::= int1 | int8 | int16 | uint1 | uint8 | uint16 | T → T ′ | T ∗ T ′ | T + T ′

e ::= n | e +T e ′ | x | fn x :T ⇒ e | e e ′ | (e, e ′) | #1 e | #2 e | inlT e | inrT e
| case e of inl (x1 : T1)⇒ e1 ||| inr (x2 : T2)⇒ e2

Its operational semantics is defined as a relation e −→ e ′ with the standard rules for
a pure call-by-value left-to-right functional language, except with the following rules
for addition of values. As usual, the expression n +T n ′ is stuck if one of these does
not apply.

n ∈ −2N−1 . . . 2N−1 − 1
n ′ ∈ −2N−1 . . . 2N−1 − 1
n ′′=n + n ′

n ′′ ∈ −2N−1 . . . 2N−1 − 1

n +intN n ′ −→ n ′′
plus int

n ∈ 0 . . . 2N − 1
n ′ ∈ 0 . . . 2N − 1
n ′′=n + n ′

n′′′ = n′′ mod 2N

n +uintN n ′ −→ n ′′′
plus uint

(a) Define a subtype relation T <: T ′ and type relation Γ ` e : T for this syntax and
operational semantics that will permit flexible use of integers in the appropriate
ranges. You can omit the standard type relation rules for the expressions (e, e ′),
#1 e, #2 e, inlT e, inrT e, and case. [14 marks]

(b) Explain three main aspects of your definitions, with reference to the program-
ming idioms they permit and the runtime errors they exclude, with examples.

[6 marks]

END OF PAPER

11

