Consider a programming language that consists of commands \(C \) composed from assignments \(V := E \) (where \(V \) is a program variable and \(E \) is an expression), the no-op \(\text{skip} \), sequencing \(C_1; C_2 \), conditionals \(\text{if } B \text{ then } C_1 \text{ else } C_2 \) (where \(B \) is a boolean expression), and loops \(\text{while } B \text{ do } C \).

(a) Explain informally what it means for a partial correctness triple \(\{ P \} C \{ Q \} \) to be valid. [2 marks]

(b) Consider the partial correctness triple \(\{ \top \} C \{ \bot \} \) (where \(\top \) is the true assertion, and \(\bot \) is the false assertion). Give a command \(C \) that makes the triple valid or explain why no such command exists. [2 marks]

(c) Consider a new primitive command \(\text{either } C_1 \ C_2 \) which non-deterministically executes either one of its arguments: \(C_1 \) or else \(C_2 \). Give a partial correctness logic rule for such a command, maintaining soundness and relative completeness. Give an alternative partial correctness logic rule for such a command, maintaining soundness but not relative completeness. [2 marks]

(d) Consider a new command \(\text{flip } V \) which randomly assigns either 0 or 1 to the variable \(V \). Give a logic rule for partial correctness for such a command, maintaining soundness and relative completeness. Define \(\text{flip} \) using \(\text{either} \) from Part (c). [2 marks]

(e) Consider a new primitive command \(\text{havoc } V \) which assigns a random integer to the variable \(V \). Give a logic rule for partial correctness for such a command, maintaining soundness and relative completeness. [2 marks]

(f) Consider the program \(Z := 0; \text{while } (Z \neq X \land Z \neq Y) \text{ do } Z := Z + 1 \). Give a reasonable pre-condition so that the program terminates with \(Z \) equal to the minimum of \(X \) and \(Y \). Propose an invariant for the while loop, and use it to prove that the program satisfies its partial correctness specification. [5 marks]

(g) Consider an extension of our programming language above with heap assignment \([E_1] := E_2 \), heap dereference \(X := [E_2] \), and disposal of heap locations \(\text{dispose(E)} \). Recall the list representation predicate:

\[
\begin{align*}
\text{list}(t, []) &= (t = \text{null}) \\
\text{list}(t, h :: \alpha) &= (\exists y. t \mapsto h \ast (t + 1) \mapsto y \ast \text{list}(y, \alpha))
\end{align*}
\]

Consider the following program that deallocates a list, and counts how many list elements it deallocated:

\[
\text{while } (X \neq \text{null}) \text{ do } (N := N + 1; Y := [X + 1]; \text{dispose}(X); \text{dispose}(X + 1); X := Y)
\]

Propose an invariant for the loop that, given precondition \(N = 0 \land \text{list}(X, \alpha) \), is sufficient to establish the postcondition \(N = \text{length}(\alpha) \land \text{list}(X, []) \). [5 marks]