8 Machine Learning and Bayesian Inference (SBH)

Evil Robot has decided to become a gambling cheat. He has a biased coin with \(\Pr(\text{head}) = p \) and two dice. The first die is biased with \(\Pr(n) = p_n \) for the \(n \)th outcome with \(n \in \{1, 2, 3, 4, 5, 6\} \). The second die is also biased, and has different numbers: its distribution is \(\Pr(n) = q_n \) with \(n \in \{4, 5, 6, 7, 8, 9\} \).

Evil Robot flips the coin. If he gets a head then he rolls the first die, otherwise he rolls the second. He then tells you the outcome. You see only the number obtained and nothing else. He does this \(m \) times, so you observe a sequence of \(m \) numbers in the range 1 to 9. Your aim is to estimate \(p \) and the distributions of each die, given the \(m \) numbers. In the following, \(\mathbf{n} \) is the vector of \(m \) observed numbers \((n_1 \cdots n_m)^T \), \(\theta \) is the set of parameters \(\{p, p_1, \ldots, p_6, q_4, \ldots, q_9\} \) and we define \(q = 1 - p \).

(a) Write down an expression for the distribution \(\Pr(n|\theta) \) where \(n \in \{1, \ldots, 9\} \). [2 marks]

(b) Define the variable

\[
z_i = \begin{cases}
1 & \text{if } n_i \text{ was obtained by rolling die 1} \\
0 & \text{otherwise.}
\end{cases}
\]

and let \(\mathbf{z} \) denote the corresponding vector with \(m \) values. Write down an expression for \(\log \Pr(\mathbf{n}, \mathbf{z}|\theta) \). [3 marks]

(c) Describe the EM algorithm for maximizing likelihood in a problem involving latent variables. [3 marks]

(d) Show that, with the distribution \(\Pr(\mathbf{z}|\mathbf{n}, \theta) \),

\[
E(z_i) = \begin{cases}
1 & \text{if } n_i \in \{1, 2, 3\} \\
0 & \text{if } n_i \in \{7, 8, 9\} \\
\frac{pp_{n_i}}{pp_{n_i} + q_{n_i}} & \text{otherwise.}
\end{cases}
\]

[4 marks]

(e) Define \(\gamma_i = E(z_i) \) as in Part (d). By applying the EM algorithm to this problem, show that you can estimate the parameters in \(\theta \) using the following updates

\[
p = \frac{\gamma}{m} \\
p_n = \frac{1}{\gamma} \sum_{\{i|n_i=n\}} \gamma_i \\
q_n = \frac{1}{m - \gamma} \sum_{\{i|n_i=n\}} (1 - \gamma_i)
\]

where \(\gamma = \sum_{i=1}^m \gamma_i \). [8 marks]