14 Types (NK)

(a) Give typing rules for the introduction form $\text{pack}(\tau, M)$ and elimination form $\text{unpack} M$ as (x, α) in N of the existential type $\exists \alpha(\tau)$.

[4 marks]

(b) An infinite stream of booleans can be represented in the polymorphic lambda calculus using the existential type

$$\text{stream} \triangleq \exists \alpha (\alpha \times (\alpha \rightarrow (\text{bool} \times \alpha)))$$

(i) Using the encoding above, define a function $\text{head} : \text{stream} \rightarrow \text{bool}$.

[3 marks]

(ii) Using the encoding above, define a function $\text{tail} : \text{stream} \rightarrow \text{stream}$.

[3 marks]

(iii) Using the encoding above, define a function

$$\text{unfold} : \forall \alpha (\alpha \rightarrow (\alpha \rightarrow (\text{bool} \times \alpha)) \rightarrow \text{stream})$$

[4 marks]

(iv) Using unfold and the other functions above, define a function $\text{notstream} : \text{stream} \rightarrow \text{stream}$, which returns a stream containing the boolean negation of the elements of the input stream. This answer should not use explicit pack or unpack expressions.

[6 marks]

[Note: You may use extensions to the pure polymorphic lambda calculus such as let-bindings, natural numbers, products, and sum types, but carefully note their use and their typing in your answers.]