2 Artificial Intelligence (SBH)

Evil Robot is updating his visual system. He has a single camera that produces an $n \times n$ matrix I of pixel values. His visual system is arranged as follows:

The input I is reduced to an $m \times m$ matrix $H(I)$. The elements $H_{i,j}$ are

$$H_{i,j}(I) = \sigma \left(\sum_{k=1}^{n} \sum_{l=1}^{n} w_{k,l}^{(i,j)} I_{k,l} + b^{(i,j)} \right)$$

where σ is an appropriate function, and $w_{k,l}^{(i,j)}$ and $b^{(i,j)}$ are the weights and bias for element (i,j). A single output $o(H)$ is computed as

$$o(H) = \sigma \left(\sum_{k=1}^{m} \sum_{l=1}^{m} w_{k,l} H_{k,l} + b \right).$$

(a) If Evil Robot has a training example (I', y') and is using an error $E(w)$ where w is a vector of all weights and biases available, derive an algorithm for computing $\frac{\partial E}{\partial w}$ for the example.

[12 marks]

(b) A modification to the system works as follows:

The mapping from I to H is replaced by an $n' \times n'$ convolution kernel. This has a single set of parameters $v_{k,l}$ and c used to compute every element of H as the weighted sum of a patch of elements in I

$$H_{i,j}(I) = \sigma \left(\sum_{k=1}^{n'} \sum_{l=1}^{n'} v_{k,l} I_{i+k-1,j+l-1} + c \right).$$

Provide a detailed description of how the algorithm derived in Part (a) must be updated to take account of this modification.

[8 marks]