2 Artificial Intelligence (SBH)

Evil Robot is updating his visual system. He has a single camera that produces an \(n \times n \) matrix \(I \) of pixel values. His visual system is arranged as follows:

The input \(I \) is reduced to an \(m \times m \) matrix \(H(I) \). The elements \(H_{i,j} \) are

\[
H_{i,j}(I) = \sigma \left(\sum_{k=1}^{n} \sum_{l=1}^{n} w_{k,l}^{(i,j)} I_{k,l} + b^{(i,j)} \right)
\]

where \(\sigma \) is an appropriate function, and \(w_{k,l}^{(i,j)} \) and \(b^{(i,j)} \) are the weights and bias for element \((i, j)\). A single output \(o(H) \) is computed as

\[
o(H) = \sigma \left(\sum_{k=1}^{m} \sum_{l=1}^{m} w_{k,l} H_{k,l} + b \right).
\]

(a) If Evil Robot has a training example \((I', y')\) and is using an error \(E(w) \) where \(w \) is a vector of all weights and biases available, derive an algorithm for computing \(\frac{\partial E}{\partial w} \) for the example. [12 marks]

(b) A modification to the system works as follows:

The mapping from \(I \) to \(H \) is replaced by an \(n' \times n' \) convolution kernel. This has a single set of parameters \(v_{k,l} \) and \(c \) used to compute every element of \(H \) as the weighted sum of a patch of elements in \(I \)

\[
H_{i,j}(I) = \sigma \left(\sum_{k=1}^{n'} \sum_{l=1}^{n'} v_{k,l} I_{i+k-1,j+l-1} + c \right).
\]

Provide a detailed description of how the algorithm derived in Part (a) must be updated to take account of this modification. [8 marks]