5 Numerical Methods (DJG)

(a) Consider implementing the natural logarithm function $\ln(t)$ for floating-point numbers using the McLaurin series:

$$\ln(1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}$$

$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

(i) List all special behaviours the natural logarithm function should have in different parts of its range and when t takes the special values NaN and $\pm\infty$. [2 marks]

(ii) The function must accept a broad range of numerical values but the series only converges when the absolute value of x is less than one, $|x| < 1$. Describe a range-reduction procedure that pre-processes the argument and post-processes the result so that the series always acts on small values of x. [6 marks]

(iii) State the two precision requirements normally expected for mathematical libraries. Considering the worst-case value(s) of x after range reduction, approximately how many terms are needed to meet one of these requirements for a single-precision implementation? Do you expect the other requirement to be met? [6 marks]
(b) The Trapezoidal Rule for numerical definite integration returns the area of the trapezium-shaped strips formed by each pair of adjacent points. The area under each such strip is:

\[\int_{a}^{b} f(x) \, dx \approx \frac{b-a}{2} [f(a) + f(b)] \]

(i) A program computes the area between two points \(A \) and \(B \) using \(N \) strips of width \(h \). What should be taken into account when choosing \(h \)? Suggest a good value for \(h \). [3 marks]

(ii) Assuming the best choice for \(h \), what characteristics of \(f() \) will affect the accuracy achieved? [3 marks]