
CST1.2018.4.1

COMPUTER SCIENCE TRIPOS Part IB

Monday 4 June 2018 1.30 to 4.30

COMPUTER SCIENCE Paper 4

Answer five questions: up to four questions from Section A, and at least one
question from Section B.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags

SPECIAL REQUIREMENTS
Approved calculator permitted

CST1.2018.4.2

SECTION A

1 Programming in C

(a) The following function is specified to return the quotient of two integers,
returning zero when the answer is undefined.

#include <stdint.h>

#include <limits.h>

int64_t divide(int64_t x, int64_t y) {

return x / y;

}

(i) Identify two bugs in this program.

(ii) Write a correct version of this program.

[6 marks]

(b) The strlen function takes a valid C string as an argument, and returns the
length of the string up to and not including the first null character. An
(erroneous) implementation is given below:

#include <stddef.h>

size_t strlen(const char *s) {

size_t i;

while (s[i] >= 0)

i++;

return i;

}

(i) Find two errors in this program.

(ii) Give a correct implementation of this function.

[6 marks]

(c) Write a function with the prototype

void rotate(int len, int *array, int k)

which rotates its input k elements to the right. E.g., if the input array is the
array [0, 1, 2, 3, 4, 5], then the call rotate(6, array, 2) should result
in array being modified to [4, 5, 0, 1, 2, 3]. Assume the array length is
passed in the len argument and 0 ≤ k < len. [8 marks]

2

CST1.2018.4.3

2 Programming in C

Consider the following structure declaration for a linked list in C:

struct node {

int data;

struct node* tail;

};

typedef struct node Node;

We represent linked lists as pointers to Node structs. Empty lists are represented
with the null pointer. Non-empty lists are represented as a valid pointer to a Node,
with the head data in the data field of the struct and the tail in the tail field of the
struct. All lists will be assumed to be non-cyclic.

(a) Write a function to add an element to the head of the list with the following
prototype.

Node *cons(int n, Node *tail);

[5 marks]

(b) Write a function to free the memory associated with a linked list, with the
following prototype:

void free_list(Node *list);

[5 marks]

(c) Write a function to do an in-place list reversal. It should take a list as an
argument, and return a list with the elements reversed. This function may not
do any heap allocation, but may modify its input. It should have the following
prototype:

Node *reverse(Node *list);

[10 marks]

3 (TURN OVER)

CST1.2018.4.4

3 Compiler Construction

This question covers a wide variety of topics in the interdisciplinary subject of
Compiler Construction.

(a) What is the difference between lexical analysis and parsing? [2 marks]

(b) Give an example of an ambiguous context-free grammar together with a
demonstration that it is indeed ambiguous. [3 marks]

(c) In the context of functional programming, describe the concept of a closure and
how it is used. [3 marks]

(d) Can any recursive function be transformed into a tail-recursive function? Briefly
explain you answer. [3 marks]

(e) Describe one advantage and one disadvantage for using reference counting as a
technique for memory management. [2 marks]

(f) For what kinds of programming languages might you employ static links on the
stack? Explain your answer. [3 marks]

(g) Consider an optimisation that replaces any expression of the form

0× e

with 0, where e is an arbitrary expression. Why might this rule be useful in a
compiler’s optimisation phase? Is it always correct? [4 marks]

4

CST1.2018.4.5

4 Compiler Construction

Suppose that we are to implement a compiler for the following simple, strongly-typed
language with types t, expressions e, and programs p.

t ::= int
| t ∗ t (product type)

e ::= n (integer)
| ? (read integer input by user)
| e + e (addition)
| e− e (subtraction)
| (e, e) (pair)
| fst e (first projection)
| snd e (second projection)
| f(e) function application
| let x : t = e in e end (let binding)

p ::= e
| fun f(x : t) : t = e ; p (function definition, recursion allowed)

In the above x and f range over identifiers. For example, here is a simple
program:

fun swap (p : int * int) : int * int = (snd p, fst p) ;

fun swizzle (p : int * (int * int)) : (int * int) * int =

(swap (snd p), fst p) ;

swizzle (?, (?, ?))

You are asked to implement this language on a stack machine that has no heap.
All stack entries are simple words (integers or pointers). Hint: consider using type
information.

(a) Describe how your compiler will use the stack to implement function calls and
returns. Describe any auxiliary pointers that you might need. Is there anything
about the language above that makes this especially easy? [5 marks]

(b) Describe how you allocate space on the stack for a value of type t. [5 marks]

(c) Describe how your compiler will implement expressions of the form (e1, e2).
Explain how the order of evaluation (left-to-right, or right-to-left) impacts your
choices. [5 marks]

(d) Describe how your compiler will implement expressions of the form fst e and
snd e. [5 marks]

5 (TURN OVER)

CST1.2018.4.6

5 Further Java

A social network can be represented as an undirected graph where vertexes represent
people and edges represent bidirectional friendship relationships between two people.
A developer constructs a simple representation of a social network using instances of
the following Java class:

public class Person implements Serializable {

private final long accountId;

private String fullname;

private Set<Person> friends;

public Person(String fullname) { ... }

public void addFriends(Set<Person> friends) { ... }

}

(a) The developer wishes to ensure that all public methods for Person are
thread-safe. Describe what thread-safety means in this context. [1 mark]

(b) Write a thread-safe implementation of the constructor for Person. You must
ensure no two instances of Person share the same accountId. You may create
additional private fields, methods or inner classes in Person. [4 marks]

(c) Write a thread-safe implementation of addFriends which uses fine-grained
locking to atomically establish new bidirectional friendship links between people
in the social network. [5 marks]

(d) The developer wishes to serialize a copy of the graph of Person objects to
disk. Without modifying the definition of Person, write an implementa-
tion of a non-thread-safe static method void SocialNet.save(Set<Person>

everyone, ObjectOutputStream oos) which will write a single copy of all
people in everyone to oos. Hint: oos.writeObject(obj) saves a copy of
all objects reachable via references from obj and safely handles any cycles of
references. [6 marks]

(e) Give two reasons why it is useful to store a single copy of each Person object in
Part (d). [2 marks]

(f) Describe in words the modifications you would need to make if there are multiple
threads attempting to add friendship links to the social network concurrently
with the execution of SocialNet.save. [2 marks]

6

CST1.2018.4.7

6 Security

(a) A Linux cloud server used by your team has the following discretionary
access-control setup:

$ getent group admin users

admin:*:9001:alice

users:*:9002:alice,bobby,carla

$ ls -ld . * */*

drwxr-xr-x 3 carla users 4096 Apr 2 2017 .

-rwsr--r-x 1 bobby admin 241859 Jan 1 2013 proedit

-r--rw--w- 1 bobby admin 6355 Jul 24 2016 readme.txt

-rw----r-- 1 carla admin 1459 Jun 12 2016 runtime.cfg

dr--r-xr-x 2 bobby users 4096 Jul 23 2016 src

-rw-r--r-- 1 bobby users 26339 Apr 28 2018 src/code.c

-r--rw---- 1 alice admin 6701 Jan 23 2017 src/code.h

The file proedit is a normal text editor, which allows its users to open, edit,
save and execute files.

Copy and complete the access-control matrix illustrated below, such that it
shows for each of the above five files, whether alice, bobby, or carla are able
to obtain, directly or indirectly, read (R) or replace (W) access to its contents.
Underline any access that can only be obtained through elevated rights.

proedit readme.txt runtime.cfg src/code.c src/code.h

alice

bobby

carla

[12 marks]

(b) Several Linux file systems extend the POSIX file permission bits with an
access-control list mechanism defined in POSIX.1e Draft 17. Explain four
significant differences between these Linux ACLs and those of Windows NTFS.

[8 marks]

7 (TURN OVER)

CST1.2018.4.8

7 Security

(a) An application process receives information via a UDP packet over a wired
Ethernet LAN connection. If the packet carries a source port number below
1024, under which conditions can the information be trusted? [6 marks]

(b) What is a UDP-based amplification attack and why are similar attacks far less
practical via TCP? [6 marks]

(c) Name and briefly explain four techniques that the designers of C compilers
and operating system kernels can implement to reduce the risk of stack-based
buffer-overflow attacks. [4 marks]

(d) How can an implementation of the C function strcmp() cause a vulnerability
to a side-channel attack, and how can this be mitigated? [4 marks]

8

CST1.2018.4.9

SECTION B

8 Semantics of Programming Languages

Consider the following syntax up to alpha equivalence, where n ranges over natural
numbers, x over a set of variables, and (as usual) x is binding in e in fn x ⇒ e.

expressions , e ::= n | x | fn x ⇒ e | e e ′

values , v ::= n | x | fn x ⇒ e

(a) Define free variables fv(e) and capture-avoiding substitution {e/z}e ′. [3 marks]

(b) Define a left-to-right call-by-value reduction relation e −→ e ′. [3 marks]

Implementing a language using substitution is inefficient, as each substitution has to
traverse a potentially large subterm. Consider the following proposal for an abstract
machine for this language using environments E , lists of variable/value pairs.

〈E , e〉 −→ 〈E ′, e ′〉

(x , v) ∈ E

〈E , x 〉 −→ 〈E , v〉
lookup

x 6∈ dom(E) ∪ fv(range(E)) ∪ fv(v)

〈E , (fn x ⇒ e) v〉 −→ 〈(x , v) :: E , e〉
fn

〈E , e1〉 −→ 〈E ′, e ′
1〉

〈E , e1 e2〉 −→ 〈E ′, e ′
1 e2〉

app left

〈E , e2〉 −→ 〈E ′, e ′
2〉

〈E , v1 e2〉 −→ 〈E ′, v1 e ′
2〉

app right

(c) Give the sequence of abstract-machine reduction steps, including the configura-
tions and the names of the rules used, for the initial configuration below. You
need not give full derivation trees.

〈[], ((fn x ⇒ (fn y ⇒ x y)) (fn z ⇒ z)) 3〉

[5 marks]

(d) Explain, with a concrete example and its reduction sequence, what could go
wrong if the premise of fn had been omitted. [5 marks]

(e) Write {E}e for the iterated substitution defined by

{[]}e = e
{(x , v) :: E}e = {E}({v/x}e)

Prove that {E}(e1 e2) = ({E}e1 {E}e2). [4 marks]

9 (TURN OVER)

CST1.2018.4.10

9 Semantics of Programming Languages

Consider the following language with higher-order functions and mutable global
references. Here l ranges over mutable location names, that can hold arbitrary values
v , n ranges over natural numbers, and x ranges over immutable variable names.

e ::= n | l | x | fn x : T ⇒ e | e e ′ | e := e ′ | !e

v ::= n | l | fn x : T ⇒ e

Suppose it has a standard left-to-right call-by-value operational semantics. You need
not state this semantics.

The definition of Γ `eff e : T below, where an effect eff is a subset of {R,W}, is a
flawed attempt to statically compute a sound approximation of the possible dynamic
side-effects of expressions. Such an analysis is sound if eff contains R and/or W
whenever there is any execution of 〈e, s〉, for any store s that is well-typed with
respect to Γ, that involves (respectively) reading and/or writing the store.

Function types are annotated with the latent effects that may occur when the function
is applied: T ::= int | T →eff T ′ | T ref

Γ `eff e : T

Γ `{ } n : int
num

l : T ref ∈ Γ

Γ `{R,W} l : T ref
loc

x : T ∈ Γ

Γ `{ } x : T
var

Γ, x : T `eff e : T ′

Γ `{ } fn x : T ⇒ e : T →eff T ′ fn

Γ `eff e : T1 →eff ′′ T2

Γ `eff ′ e ′ : T1

Γ `eff ∪ eff ′ e e ′ : T2

app

Γ `eff e : T ref
Γ `eff ′ e ′ : T

Γ `eff ∪ eff ′ ∪{W} e := e ′ : T
assign

Γ `eff e : T ref

Γ `{R}!e : T
deref

(a) There are three flaws in the above rules, which make them either not sound or
an unnecessarily coarse approximation. Explain each flaw, giving a corrected
rule for each and an example that shows the problem (assuming the other flaws
are fixed). [15 marks]

(b) In the system above, functions have to be applied to arguments of exactly the
expected type. Define a subtype relation T <: T ′ and subsumption rule that
would let function arguments be used even if they have fewer (latent) effects
than those anticipated by the function. [5 marks]

END OF PAPER

10

